Unit 5: Data Representation

Prashant Gautam

M.Sc. CSIT

Binary, Octal \& Hexadecimal Number Systems and their conversions

Number system

- A number system defines how a number can be represented using distinct symbols.
\square A number can be represented differently in different systems.
\square For example, the two numbers (2A) 16 and (52)8 both refer to the same quantity, (42) 10 , but their representations are different.

Number system can be categorized as

1. Decimal number system
2. Binary number system
3. Octal number system
4. Hexadecimal Number System

- Each number system is associated with a base or radix - The decimal number system is said to be of base or radix10
- A number in base r contains r digits $0,1,2, \ldots, r-1$
- Decimal (Base 10): 0,1,2,3,4,5,6,7,8,9

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	$0,1, \ldots 9$	Yes	No
Binary	2	0,1	No	Yes
Octal	8	$0,1, \ldots 7$	No	No
Hexa- decimal	16	$0,1, \ldots 9$, A, B,$\ldots \mathrm{F}$	No	No

The decimal system (base 10)

\square The word decimal is derived from the Latin root decem(ten). In this system the base $b=10$ and we use ten symbols.

$$
S=\{0,1,2,3,4,5,6,7,8,9\} .
$$

Binary system (base 2)

\square The word binary is derived from the Latin root bini (or two by two).
\square In this system the base $\mathbf{b}=2$ and we use only two symbols,
$S=\{0,1\}$
\square The symbols in this system are often referred to as binary digits or bits.

The hexadecimal system

(base 16)

- The word hexadecimal is derived from the Greek root hex (six) and the Latin root decem (ten).
\square ln this system the base $\mathrm{b}=16$ and we use sixteen symbols to represent a number.
- The set of symbols is
$S=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
- The symbols A, B, C, D, E, F are equivalent to
$10,11,12,13,14$, and 15 respectively.
- The symbols in this system are often referred to as hexadecimal digits.

The octal system (base 8)

\square The word octal is derived from the Latin root octo (eight).
\square In this system the base $\mathrm{b}=8$ and we use eight symbols to represent a number.
\square The set of symbols is:
$S=\{0,1,2,3,4,5,6,7\}$

Common Number Systems

System	Base	Symbols	Used by Humans?	Used in Computers?

Quantities / Counting

Decimal	Binary	Octal	Hexa- decimal

Decimal	Binary	Octal	Hexa- decimal

Quantities / Counting

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion among Bases

- Possibilities

- Example

$$
25_{10}=11001_{2}=31_{8}=19_{16}
$$

Decimal to Binary

Decimal

Binary

- Technique
- Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- Second remainder is bit 1 and so on

Example (Decimal to Binary)

$125_{10}=?_{2} \quad$| 2 | 125 | 1 |
| :---: | :---: | :---: |
| 2 | 62 | 0 |
| 2 | 31 | 1 |
| 2 | 15 | 1 |
| 2 | 7 | 1 |
| 2 | 3 | 1 |
| 2 | 1 | 1 |
| | 0 | |

$125_{10}=1111101_{2}$

Example (Decimal to Binary)

$0.6875_{10}=?_{2}$
integer fraction

$0.6875 \times 2=1.3750$	1	+	0.3750
$0.3750 \times 2=0.7500$			
$0.7500 \times 2=1.5000$	0	+	0.7500
$0.5000 \times 2=1.0000$	+	0.5000	
1	+	0.0000	

$$
0.6875_{10}=0.1011_{2}
$$

Binary to Decimal

- Technique
- Multiply each bit by 2^{n}, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example (Binary to Decimal)

$101011_{2}=43_{10}$

Example (Binary to Decimal)

$$
11.11_{2}=3.75_{10}
$$

Decimal to Octal

Decimal

- Technique
- Divide by eight
- Keep track of the remainder

Example (Decimal to Octal)

$$
125_{10}=?_{8} \quad \begin{array}{c|c|c}
8 & 125 & 5 \\
\hline 8 & 15 & 7 \\
\hline 8 & 1 & 1 \\
\hline & 0 &
\end{array}
$$

$$
125_{10}=175_{8}
$$

Example (Decimal to Octal)

$0.6875_{10}=?_{8}$
integer fraction
$\begin{aligned} & 0.6875 \times 8=5.5000 \\ & 0.5000 \times 8=4.0000\end{aligned} \quad \downarrow \begin{aligned} & 5+0.5000 \\ & 4\end{aligned}+0.0000$
$0.6875_{10}=0.54_{8}$

Octal to Decimal

- Technique
- Multiply each bit by 8^{n}, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example (Octal to Decimal)

468_{10}

$$
724_{8}=468_{10}
$$

Example (Octal to Decimal)

Decimal to Hexa-Decimal

Decimal

Hexa-Decimal

- Technique
- Divide by 16
- Keep track of the remainder

Example (Decimal to HexaDecimal)

$$
1234_{10}=?_{16} \begin{array}{c|c|c}
16 & 1234 & 2 \\
\hline 16 & 77 & 13=\mathrm{D} \\
\hline 16 & 4 & 4 \\
\hline & 0 &
\end{array}
$$

$$
1234_{10}=4 D 2_{16}
$$

Hexa-Decimal to Decimal

- Technique
- Multiply each bit by 16^{n}, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right
- Add the results

Example (HexaDecimal to Decimal)

$$
\begin{gathered}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{~A} \times 16^{2}+\mathrm{B} \times 16^{1}+\mathrm{C} \times 16^{0} \\
10 \times 16^{2}+11 \times 16^{1}+12 \times 16^{0} \\
2560+176+12 \\
2748_{10} \\
\mathrm{ABC}_{16}=2748_{10}
\end{gathered}
$$

- Technique
- Convert each octal digit to a 3-bit equivalent binary representation

Octal - Binary Table

 Octal Binary| 0 | 000 |
| :--- | :--- |
| 1 | 001 |
| 2 | 010 |
| 3 | 011 |
| 4 | 100 |
| 5 | 101 |
| 6 | 110 |
| 7 | 111 |

Example (Octal to Binary)

$705_{8}=?_{2}$

7	0	5
\downarrow	\downarrow	\downarrow
111	000	101

$$
705_{8}=111000101_{2}
$$

Binary to Octal

- Technique
- Group bits in threes, starting on right
- Convert to octal digits

Example (Binary to Octal)

 $1011010111_{2}=?_{8}$
$001 \quad 011 \quad 010 \quad 111$
 \downarrow 1 \downarrow 3

 \downarrow 7
 $1011010111_{2}=1327_{8}$

Hexa-Decimal to Binary

- Technique
- Convert each hexadecimal digit to a 4-bit equivalent binary representation

Hexa-Decimal to Binary

HexaDecimal	Binary	HexaDecimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	B	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Example (Hexa-Decimal to Binary) $10 \mathrm{AF}_{16}=?_{2}$

1	0	A	F
\downarrow	\downarrow	\downarrow	\downarrow
0001	0000	1010	1111

$$
10 A F_{16}=1000010101111_{2}
$$

Binary to Hexa-Decimal Binary

- Technique
- Group bits in fours, starting on right
- Convert to hexadecimal digits

Example (Binary to Hexa-Decimal) $1011010111_{2}=?_{16}$

001011010111

 \downarrow 7

$1011010111_{2}=2 D 7_{16}$

Octal to Hexa-Decimal

Octal

- Technique
- Convert Octal to Binary
- Regroup bits in fours from right
- Convert Binary to Hexa-Decimal

Example (Octal to Hexa-Decimal)

 $1076_{8}=?_{16}$

$$
1076_{8}=23 \mathrm{E}_{16}
$$

Hexa-Decimal to Octal

- Technique
- Convert Hexa-Decimal to Binary
- Regroup bits in three from right
- Convert Binary to Octal

Example (Hexa-Decimal to Octal)

 $1 \mathrm{FOC}_{16}=?_{8}$1

0001

11110000

001100
\downarrow 1100

$$
1 \mathrm{FOC}_{16}=17414_{8}
$$

2.1.2 Binary Arithmetic

Binary Addition

- Rules for binary addition

$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10$ i.e.
0 with a carry of 1

Binary Subtraction

- Rules for binary subtraction
$0-0=0$

$1-1=0$
$1-0=1$
$0-1=1$, with
a borrow 1
- 01111 . 111

0010 . 011

Binary Multiplication 10111
 x 10011
 10111
 10111
 00000
 00000
 10111
 110110101

Binary Division 110|101101|0111.1
 $\frac{000 \downarrow}{1011}$ 110 110
 110
 110
 110
 000

2.1.1 Representation of Signed Numbers, Floating Point Number

Signed Binary Numbers

- Two ways of representing signed numbers:
- 1) Sign-magnitude form, 2) Complement form.
- Most of computers use complement form for negative number notation.
- 1's complement and 2's complement are two different methods in this type.

1's Complement

- 1 's complement of a binary number is obtained by subtracting each digit of that binary number from 1.
- Example

$$
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
- & 1 & 1 & 0
\end{array} 1
$$

2's Complement

- 2's complement of a binary number is obtained by adding 1 to its 1's complement.
- Example
$\begin{array}{llll}1 & 1 & 1\end{array}$
- 1100
$0 \quad 011$
$+$

$$
0 \quad 1 \quad 0 \quad 0
$$

(2's complement of 1100)

9's Complement

- 9's complement of a decimal number is obtained by subtracting each digit of that decimal number from 9 .
- Example

$$
\begin{array}{rrrc}
9 & 9 & 9 & 9 \\
-\quad 3 & 4 & 6 & 5 \\
\hline 6 & 5 & 3 & 4 \\
\text { (9's complement of 3465) }
\end{array}
$$

$$
\begin{array}{lllll}
9 & 9 & 9 & 9 & 9
\end{array}
$$

- 782.54
$\begin{array}{llll}2 & 1 & 7 & 4\end{array}$
(9's complement of 782.54)

10's Complement

- 10's complement of a decimal number is obtained by adding 1 to its 9's complement.
- Example

$$
\begin{array}{rrrrr}
9 & 9 & 9 & 9 \\
- & 3 & 4 & 6 & 5 \\
\hline 6 & 5 & 3 & 4 \\
+ & & & 1 \\
\hline
\end{array}
$$

$\underset{\text { minuend }}{7-5=2}$

Subtraction using 9's complement

- Obtain 9's complement of subtrahend
- Add the result to minuend and call it intermediate result
- If carry is generated then answer is positive and add the carry to Least Significant Digit (LSD)
- If there is no carry then answer is negative and take 9's complement of intermediate result and place negative sign to the result.

Example

1) $745.81-436.62$

$$
\begin{array}{llllllllllll}
7 & 4 & 5 & . & 8 & 7 & 7 & 5 & . & 1
\end{array}
$$

- $4366.62 \xrightarrow{\text { 9's complement }}+\begin{array}{llllll}5 & 6 & 3 & & 3 & 7\end{array}$

$$
\begin{array}{llllll}
3 & 0 & 9 & . & 9
\end{array}
$$

$$
\begin{array}{llllll}
1 & 3 & 0 & 9 & . & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{llllll}
3 & 0 & 9 & . & 1
\end{array}
$$

Example

2) $436.62-745.81$

$$
\begin{aligned}
& 436.62436 .62 \\
& -745.81 \xrightarrow{9 \prime s \text { complement }}+254.18 \\
& \text { - } 309 \text {. } 19 \\
& \text { 9's complement } \begin{array}{cccccc}
6 & 9 & 0 & . & 8 & 0 \\
3 & 0 & 9 & . & 1 & 9
\end{array}
\end{aligned}
$$

Subtraction using 10's complement

- Obtain 10 's complement of subtrahend
- Add the result to minuend
- If carry is generated then ignore it and result itself is answer
- If there is no carry then answer is negative and take 10's complement of result and place negative sign to the result.

Example

1) $745.81-436.62$

$$
\begin{aligned}
& \begin{array}{lllll}
7 & 4 & 5 & . & 1
\end{array} \\
& \begin{array}{lllll}
7 & 4 & 5 & . & 1
\end{array} \\
& -436.62 \xrightarrow{\text { no's complement }}+563.38 \\
& 30 \quad 9 \quad 19 \\
& \begin{array}{lllllll}
1 & 3 & 0 & 9 & . & 1 & 9
\end{array} \\
& \text { Ignore the carry }
\end{aligned}
$$

Example

2) $436.62-745.81$

$$
\begin{aligned}
& 4366 \begin{array}{llllllll}
4 & 6 & 4 & 6 & 6 & 2
\end{array} \\
& -745.81 \xrightarrow{10 \prime s \text { complement }}+254.19 \\
& \text { - } 309 \text {. } 19 \\
& \text { 10's complement }\left(\begin{array}{cccccc}
6 & 9 & 0 & . & 8 & 1 \\
3 & 0 & 9 & . & 1 & 9
\end{array}\right.
\end{aligned}
$$

As carry is not generated, so take 10's complement of the intermediate result and add ' - ' sign to the result

Subtraction using 1's Complement

- Obtain 1's complement of subtrahend
- Add the result to minuend and call it intermediate result
- If carry is generated, then answer is positive and add the carry to Least Significant Bit (LSB)
- If there is no carry, then answer is negative and take 1's complement of intermediate result and place negative sign to the result.

Example

1) $68.75-27.50$

$$
\begin{aligned}
& 68.75 \\
& 01000100.1100 \\
& -27.50 \xrightarrow{\text { 1's complement }}+11100100.0111 \\
& +41.25 \\
& \text { C100101001.0011 } \\
& +1 \\
& 00101001.0100
\end{aligned}
$$

Example

2) $43.25-89.75$

$$
43.25
$$

00101011.0100

$-89.75 \xrightarrow{\text { I'scomplement }}+10100110.0011$
$-46.50{ }_{\text {1'scomplemen }}\left(\begin{array}{l}11010001.0111 \\ 00101110.1000\end{array}\right.$
As carry is not generated, so take 1's
complement of the intermediate
result and add ‘- 'sign to the result

Subtraction using 2's Complement

- Obtain 2's complement of subtrahend
- Add the result to minuend
- If carry is generated, then ignore it and result itself is answer
- If there is no carry, then answer is negative and take 2's complement of result and place negative sign to the result.

Example

1) $68.75-27.50$

$$
\begin{aligned}
& 68.75 \\
& 01000100.1100 \\
& -27.50 \xrightarrow{\text { 2's complement }}+11100100.1000 \\
& +\underset{\text { Ignore Carry bit }}{41.25} 1100101001.0100 \\
& 00101001.0100
\end{aligned}
$$

Example

2) $43.25-89.75$

$$
43.25
$$

00101011.0100

$-89.75 \xrightarrow{\text { 2'scomplement }}+10100110.0100$
$-46.50{ }_{\text {2'scomplemen }}\left(\begin{array}{l}11010001.1000 \\ 00101110.1000\end{array}\right.$
As carry is not generated, so take 2's
complement of the intermediate
result and add ‘- ‘sign to the result

Signed Binary Numbers

- To represent negative integers, we need a notation for negative values.
- It is customary to represent the sign with a bit placed in the leftmost position of the number since binary digits.
- The convention is to make the sign bit 0 for positive and 1 for negative.
- Different methods of representations (example):

Signed-magnitude representation:
10001001
Signed-1's-complement representation:
11110110
11110111 ie three

- Signed-2's-complement representation:
represenildiuis.

Signed Binary Numbers

Table 1.3

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

Representation of negative number in 2's complement form

- Express -65.5 in 12 bit 2's complement form.

2	65	1
2	32	0
2	16	0
2	8	0
2	4	0
2	2	0
2	1	1
	0	

$$
0.5 \times 2=1.0
$$

So, result in 12-bit binary is as follows:

$$
65.5_{10}=01000001.1000_{2}
$$

For negative number, we have to convert this into 2's complement form

$$
-65.5_{10}=10111110.1000_{2}
$$

Signed Binary Numbers

- Arithmetic addition
- The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.
- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.
- A carry out of the sign-bit position is discarded.
- Example:

+ 6	00000110	-6	11111010
$\underline{+13}$	$\underline{00001101}$	$\underline{+13}$	$\underline{00001101}$
+19	00010011	+ 7	00000111
+ 6	00000110	-6	11111010
-13	$\underline{11110011}$	-13	$\underline{11110011}$
-7	11111001 Di Prashant	-19	11101101

Signed Binary Numbers

- Arithmetic Subtraction
- In 2's-complement form:

1. Take the 2 's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
2. A carry out of sign-bit position is discarded.

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

- Example:

$$
\begin{aligned}
(-6)-(-13) & \Longrightarrow(11111010-11110011) \\
& \Longrightarrow(11111010+00001101) \\
& \Longrightarrow 00000111(+7)
\end{aligned}
$$

Representation of Floating-Point Number

BINARY REPRESENTATION OF FLOATING-POINT NUMBERS

Converting decimal fractions into binary representation.

Consider a decimal fraction of the form: 0.d1d2...dn

We want to convert this to a binary fraction of the form:
0.b1b2...bn (using binary digits instead of decimal digits)

Algorithm for conversion

Let X be a decimal fraction: $\mathbf{0 .} \mathbf{d}_{\mathbf{1}} \mathbf{d}_{\mathbf{2}} . . \mathrm{d}_{\mathrm{n}}$
$\mathrm{i}=1$
Repeat until $\mathrm{X}=0$ or $\mathrm{i}=$ required no. of binary fractional digits \{
$Y=X * 2$
$X=$ fractional part of Y
$B_{i}=$ integer part of Y
$\mathrm{i}=\mathrm{i}+1$
\}

EXAMPLE 1

Convert 0.75 to binary

$X=0.75 \quad$ (initial value)
$X^{*} 2=1.50$. Set $b 1=1, x=0.5$
$x^{*} 2=1.0$. Set $b 2=1, x=0.0$

The binary representation for 0.75 is thus
$0 . b 1 b 2=0.11 b$

Let's consider what that means...

In the binary representation 0.b1b2...bm
b1 represents 2^{-1} (i.e., $1 / 2$)
b2 represents 2^{-2} (i.e., 1/4)
bm represents $2^{-m}\left(1 /\left(2^{m}\right)\right)$

So, 0.11 binary represents
$2^{-1}+2^{-2}=1 / 2+1 / 4=3 / 4=0.75$

EXAMPLE 2

Convert the decimal value 4.9 into binary

Part 1: convert the integer part into binary: $\quad 4=100 \mathrm{~b}$

Part 2.

Convert the fractional part into binary using multiplication by 2 :

$X=.9 * 2=1.8$.	Set $b_{1}=1, X=0.8$
$X * 2=1.6$.	Set $b_{2}=1, X=0.6$
$X * 2=1.2$.	Set $b_{3}=1, X=0.2$
$X * 2=0.4$.	Set $b_{4}=0, X=0.4$
$X * 2=0.8$.	Set $b_{5}=0, X=0.8$,

which repeats from the second line above.

Since X is now repeating the value 0.8 ,
we know the representation will repeat.

The binary representation of 4.9 is thus:
100.1110011001100...

COMPUTER REPRESENTATION OF FLOATINGPOINT NUMBERS

In the CPU, a 32-bit floating point number is represented using IEEE standard format as follows:

SIGN | EXPONENT | MANTISSA

 where SIGN is one bit, the EXPONENT is 8 bits, and the MANTISSA is $\mathbf{2 3}$ bits.- The mantissa represents the leading significant bits in the number.
- The exponent is used to adjust the position of the binary point (as opposed to a "decimal" point)
- The mantissa is said to be normalized when it is expressed as a value between 1 and 2. I.e., the mantissa would be in the form 1.xxxx.
- The leading integer of the binary representation is not stored. Since it is always a 1, it can be easily restored.
- The "SIGN" bit is used as a sign bit and indicates whether the value represented is positive or negative (0 for positive, 1 for negative)
- If a number is smaller than 1 , normalizing the mantissa will produce a negative exponent.
- But 127 is added to all exponents in the floating point representation, allowing all exponents to be represented by a positive number.

Example 1. Represent the decimal value 2.5 in 32bit floating point format.

$$
2.5=10.1
$$

In normalized form, this is: $1.01 * 2^{1}$

The mantissa: $\mathrm{M}=01000000000000000000000$
(23 bits without the leading 1)

The exponent: $\mathrm{E}=1+127=128=10000000$
The sign: $\mathrm{S}=0$ (the value stored is positive)

So, $2.5=01000000001000000000000000000000$

Example 2: Represent the number -0.00010011 in floating point form.
$0.00010011=1.0011 * 2^{-4}$

Mantissa: $M=00110000000000000000000$ (23 bits with the integral 1 not represented)

Exponent: $\mathrm{E}=-4+127=01111011$
$S=1$ (as the number is negative)

Result: 10111101100110000000000000000000

Exercise 1: represent -0.75 in floating point format.

Exercise 2: represent 4.9 in floating point format.

Complements
 (Summary)

Complements

- There are two types of complements for each base-rsystem: the radix complement and diminished radix complement.
- Diminished Radix Complement - (r-1)'s Complement
- Given a number Nin base r having n digits, the ($r-1$)'s complement of N is defined as:

$$
(m-1)-N
$$

- Example for 6-digit decimal numbers:
- 9's complement is (~-1) $-N=\left(10^{6}-1\right)-N=999999-N$
- 9's complement of 546700 is $999999-546700=453299$
- Example for 7-digit binary numbers:
-1 's complement is $(m-1)-N=\left(2^{7}-1\right)-N=1111111-N$
- 1's complement of 1011000 is $1111111-1011000=0100111$
- Observation:
- Subtraction from ($m-1$) will never requireaborrow
- Diminished radix complement can be computed digit-by-digit
- For binary: $1-0=1$ and $1-1=0$

Complements

- 1's Complement (Diminished RadixComplement)
-All '0’s become '1's
-All '1's become '0's
Example (10110000) ${ }_{2}$
$\square(01001111)_{2}$
If you add a number and its 1 's complement...

10110000
+01001111
11111111

Complements

- Radix Complement

The r 's complement of an n-digit number N in base r is defined as $r^{n}-N$ for $N \neq 0$ and as 0 for $N=0$. Comparing with the $(r-1)$'s complement, we note that the r 's complement is obtained by adding 1 to the $(r-1)$'s complement, since $r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1$.

- Example: Base-10

The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300

- Example: Base-2

The 2's complement of 1101100 is 0010100
The 2's complement of 0110111 is 1001001

Complements

- 2's Complement (Radix Complement)
- Take 1's complement then add 1
- Toggle all bits to the left of the first ' 1 ' from the right

Example:
Number: 10110000
10110000
1's Comp.:
01001111

01010000
01010000

Complements

- Subtraction with Complements
- The subtraction of two n-digit unsigned numbers $M-N$

1. Add the minuend M to the r 's complement of the subtrahend N. Mathematically, M
$+\left(r^{n}-N\right)=M-N+r^{n}$.
2. If $M \geqq N$, the sum will produce and end carry r^{n}, which can be discarded; what is left is the result $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $r^{n}-(N-M)$, which is the $r^{\prime} \mathrm{s}$ complement of $(N-M)$. To obtain the answer in a familiar form, take the r 's complement of the sum and place a negative sign in front.

Complements

- Example-
- Using 10's complement, subtract 72532-3250.

	$M=72532$	
10 's complement of N	$=\frac{+96750}{}$	
Sum	$=169282$	
Discard end carry 10^{5}	$=$	-100000
Answer	$=69282$	

- Example
- Using 10's complement, subtract 3250-72532.

Therefore, the answer is $-(10$'s complement of 30718$)=-69282$.

Complements

- Example
- Given the two binary numbers $X=1010100$ and $Y=$ 1000011, perform the subtraction (a) $X-Y$; and (b) Y X, by using 2's complement.

(a)	$\mathrm{X}=$	1010100
	2 's complement of $\mathrm{Y}=$	+0111101
	Sum $=$	10010001
	Discard end carry $2^{7}=$	10000000
	Answer. $\mathrm{X}-\mathrm{Y}=$	0010001

(b) \quad\begin{tabular}{rr}
Y \& $=1000011$

\& 2's complement of X

$=+$

0101100

Sum
\end{tabular}

There is no end carry.
Therefore, the answer is Y -
$X=-(2$'s complement of
$1101111)=-0010001$.

Complements

- Subtraction of unsigned numbers can also be done by means of the $(r-1$)'s complement. Remember that the $(r-1)$'s complement is one less then the r 's complement.
- Example
- Repeat Previous Example, but this time using 1'scomplement.

(a) | $X-Y=1010100-1000011$ | |
| ---: | ---: |
| $X=$ | 1010100 |
| 1's complement of $Y= \pm 0111100$ | |
| Sum $=$ | 10010000 |
| End-around carry | $=\frac{+}{}$ |
| Answer. $X-Y$ | $=$ |

$$
\begin{aligned}
& \text { (b) } Y-X=1000011-1010100 \\
& Y=1000011 \\
& \text { 1's complement of } X=+0101011 \\
& \text { Sum }=1101110
\end{aligned}
$$

There is no end carry, Therefore, the answer is $\mathrm{Y}-\mathrm{X}=-$ (1's complement of 1101110) $=-$ 0010001.

Signed Binary Numbers

- To represent negative integers, we need a notation for negative values.
- It is customary to represent the sign with a bit placed in the leftmost position ofthe number since binary digits.
- The convention is to make the sign bit 0 for positive and 1 for negative.
- Example:

Signed-magnitude representation:	10001001
Signed-1's-complement representation:	11110110
Signed-2's-complement representation:	11110111

- Table 1.3 lists all possible four-bit signed binary numbers in the three representations.

Signed Binary Numbers

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

Signed Binary Numbers

- Arithmetic addition
- The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signsare the same. we add the two magnitudes and give the sum the common sign. If the signsare different. we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.
- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.
- Acarry out of the sign-bit positionis discarded.
- Example:

+ 6	00000110	-6	11111010
+13	$\underline{00001101}$	+13	$\underline{00001101}$
+19	00010011	+ 7	00000111
+ 6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	11111001	- 19	11101101

Signed Binary Numbers

- Arithmetic Subtraction
- 1. Take the 2 's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).

2. A carry out of sign-bit position is discarded.

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

$(-6)-(-13)$

- Example:
(11111010-11110011)
$(11111010+00001101)$
$00000111(+7)$

Binary Storage and Registers

- Registers
- Abinary cell is a device that possesses two stable states and is capable of storing oneof the two states.
- Aregister is a group of binary cells. Aregister with n cells can store any discrete quantity of information that contains nbits.

n cells
 2^{n} possible states

- Abinary cell
- Two stable state
- Store one bit of information
- Examples: flip-flop circuits, ferrite cores, capacitor
- Aregister
- Agroup of binary cells
- AXin x86 CPU
- Register Transfer
- Atransfer of the information stored in one register to another.
- One of the major operations in digital system.
- An example in next slides.

