
Unit 3: Informed and Uninformed Search LH 8

Presented By : Tekendra Nath Yogi

Tekendranath@gmail.com

College Of Applied Business And Technology

Contd…
• Unit 3: Informed and Uninformed Search LH 8

– 3.1 Why search in AI?

– 3.2 Blind search (Un-informed search)

• 3.2.1 Breadth first search (BFS)

– Variations: Uniform cost search

• 3.2.2 Depth first search (DFS)

– Variations: Depth limited search, Iterative deepening DFS

– 3.3 Heuristic search (Informed search)

• 3.3.1 Hill climbing

– The Foothills Problem

– The Plateau Problem

– The Ridge Problem

• 3.3.2 Greedy (Best-first) search

• 3.3.3 A* algorithm search

• 3.3.4 Means-Ends Analysis: Household ROBOT, Monkey Banana Problem

212/25/2018 By: Tekendra Nath Yogi

Contd…

• Unit 3: Informed and Uninformed Search contd…

– 3.4 General Problem Solving (GPS): Problem solving agents

• 3.4.1 Constraint satisfaction problem

– Constraint Satisfaction Search

– AND/OR trees

– The bidirectional search

– Crypto-arithmatics

– 3.5 Game playing and AI

• 3.2.1 Game Trees and Mini-max Evaluation

• 3.2.2 Heuristic Evaluation

• 3.2.3 Min-max algorithm (search)

• 3.2.4 Min-max with alpha-beta

• 3.2.5 Games of chance

• 3.2.6 Game theory
312/25/2018 By: Tekendra Nath Yogi

Four General steps in problem solving

• Problem solving is a systematic search through a range of possible actions in

order to reach some predefined goal or solution.

• For problem solving a kind of goal based agent called problem solving agents

are used.

• This agent first formulates a goal and a problem, searches for a sequence of

actions that would solve the problem, and then executes the actions one at a

time. When this is complete, it formulates another goal and starts over.

• This over all process is described in the following four steps:

– Goal formulation

– Problem formulation

– Search

– Execute

412/25/2018 By: Tekendra Nath Yogi

Contd…

• Goal formulation:

– Intelligent agent maximize their performance measure by adapting a goal

and aim at satisfying it.

– Goal help organize behavior by limiting the objectives that the agent is

trying to achieve and hence the actions it needs to consider.

– Goal are the set of world states in which the goal is satisfied.

– Therefore, during goal formulation step, specify what are the successful

world states.

512/25/2018 By: Tekendra Nath Yogi

Contd…

• Problem Formulation:

– Problem formulation is the process of deciding what actions and states to

consider, given a goal.

– Therefore, the agent‟s task is to find out how to act, now and in the future,

so that it reaches a goal state.

– Before it can do this, it needs to decide(or we need to decide on its

behalf) what sorts of actions and states it should consider.

612/25/2018 By: Tekendra Nath Yogi

Contd…

• Search a solution:

– The process of looking for a sequence of actions that reaches the goal is

called a searching.

– search algorithm takes a problem as a input and returns a solution in the

form of an action sequence.

712/25/2018 By: Tekendra Nath Yogi

Contd…

• Execution:

– once a solution is found, the actions it recommends can be carried out.

This is called the execution phase.

– once a solution has been executed , the agent will formulate a new goal.

812/25/2018 By: Tekendra Nath Yogi

Problem Formulation

• A problem can be defined formally by five components:

– Initial state

– Actions

– Transition model

– Goal Test

– Path Cost

912/25/2018 By: Tekendra Nath Yogi

Contd…

• Initial state: The state from which agent start.

• Actions: A description of the possible actions available to the agent. During

problem formulation we should specify the all possible actions available for

each state „s‟.

• Transition model: A description of what each action does is called the

transition model. For formulating transition model in problem formulation we

take state „s‟ and action „a‟ for that state and then specify the resulting state

„s‟

• Goal Test: Determine whether the given state is goal state or not.

• Path Cost: Sum of cost of each path from initial state to the given state

1012/25/2018 By: Tekendra Nath Yogi

One way to formally define a problem: State space Representation

• The set of all states reachable from the initial state by any sequence of actions is

called state space.

• The state space forms a directed graph in which nodes are states and the links

between nodes are actions.

• A State space representation allows for the formal definition of a problem which

makes the movement from initial state to goal state quite easy.

• Disadvantage: it is not possible to visualize all states for a given problem. Also,

the resources of the computer system are limited to handle huge state space

representation.

1112/25/2018 By: Tekendra Nath Yogi

Contd…

• State Space representation of Vacuum World Problem: Vacuum world

can be formulated as a problem as follows:

– States: The state is determined by both the agent location and the dirt locations. The

agent is in one of two locations, each of which might or might not contain dirt.

– Initial state: Any state can be designated as the initial state.

– Actions: In this simple environment, each state has just three actions: Left, Right,

and Suck. Larger environment may might also include Up and Down.

– Transition Model: The actions have their expected effects , except that moving

Left in leftmost square, moving Right in the rightmost square, and sucking in a

clean square having no effect. The complete state space is shown in figure below.

– Goal Test: This checks whether all the squares are clean.

– Path cost: Each step costs 1, so the path cost is the number of steps in the path.

1212/25/2018 By: Tekendra Nath Yogi

Contd…

1312/25/2018 By: Tekendra Nath Yogi

Fig: State space representation for the vacuum world

Here, links denote actions: L: left, R= Right, S= Suck

Searching For Solution

• Having formulated some problems, we now need to solve them.

• To solve a problem we should perform a systematic search through a range of

possible actions in order to reach some predefined goal or solution.

• A solution is an action sequence, so search algorithms works by considering

various possible action sequences.

• The possible action sequences starting at the initial state form a search tree

with the initial state at the root; the branches are actions and the nodes

correspond to states in the state space of the problem.

1412/25/2018 By: Tekendra Nath Yogi

Contd…

• General search:

– The searching process starts from the initial state (root node)and

proceeds by performing the following steps:

• Check whether the current state is the goal state or not?

• Expand the current state to generate the new sets of states.

• Choose one of the new states generated for search depending upon search

strategy.

• Repeat step 1 to 3 until the goal state is reached or there are no more state to

be expanded.

1512/25/2018 By: Tekendra Nath Yogi

Contd…

• The Importance of Search in AI:

– Many of the tasks underlying AI can be phrased in terms of a search for

the solution to the problem at hand.

– Many goal based agents are essentially problem solving agents which

must decide what to do by searching for a sequence of actions that lead to

their solutions.

– For the production systems, need to search for a sequence of rule

applications that lead to the required fact or action.

– For neural network systems, need to search for the set of connection

weights that will result in the required input to output mapping.

1612/25/2018 By: Tekendra Nath Yogi

Contd…

• Measuring problem Solving Performance:

– The performance of the search algorithms can be evaluated in four ways:

– Completeness: An algorithm is said to be complete if it definitely finds

solution to the problem, if exist.

– Time complexity: How long does it take to find a solution? Usually

measured in terms of the number of nodes expanded during the search.

– Space Complexity: How much space is used by the algorithm? Usually

measured in terms of the maximum number of nodes in memory at a time

– Optimality/Admissibility: If a solution is found, is it guaranteed to be an

optimal one? For example, is it the one with minimum cost?

1712/25/2018 By: Tekendra Nath Yogi

Classes of Search methods

• There are two broad classes of search methods:

• Uninformed (or blind) search methods:

– Strategies have no additional information about states beyond that provided in

the problem definition. All they can do is generate successors and distinguish a

goal state from a non-goal state.

– All search strategies are distinguished by the order in which nodes are expanded .

• Heuristically informed search methods.

– Strategies that know whether one non-goal state is “more promising” than another

are called informed or heuristic search strategies.

– I.e., In the case of the heuristically informed search methods, one uses domain-

dependent (heuristic) information in order to search the space more efficiently.

1812/25/2018 By: Tekendra Nath Yogi

Uninformed (Or Blind) Search Methods:

• Blind search do not have additional information about state beyond the

problem definition to search a solution in the search space.

• It proceeds systematically by exploring nodes either randomly or in

some predetermined order.

• Based on the order in which nodes are expanded, it is of the following

types:

– Breadth First search (BFS)

• Variation: Uniform cost search

– Depth First search (DFS)

• Variations: Depth limit search, Iterative deepening DFS.

– Bidirectional search

19Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Breadth First Search

• Breadth First search is a simple strategy in which the root node is expanded

first, then all the successors of the root node are expanded next, then their

successors, and so on.

• In general, All nodes are expended at a given depth in the search tree before

any nodes at the next level are expanded until the goal reached.

– I.e., Expand shallowest unexpended node.

• The search tree generated by the BFS is shown in figure below:

Fig: search Tree For BFS

Note: We are using the convention that the alternatives are tried in the left to right
order.

20Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Breadth-first search

21Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Breadth-first search

22Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Breadth-first search

23Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Uniform Cost Search

• The search begins at root node. The search continues by visiting the next node

which has the least total cost from the root node. Nodes are visited in this

manner until a goal is reached.

• Now goal node has been generated, but uniform cost search keeps going,

choosing a node (with less total cost from the root node to that node than the

previously obtained goal path cost) for expansion and adding a second path.

• Now the algorithm checks to see if this new path is better than the old one; if it

is so the old one is discarded and new one is selected for expansion and the

solution is returned.

24Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Uniform cost search example1 (Find path from A to E)

• Expand A to B,C,D

• The path to B is the cheapest one with path cost 2.

• Expand B to E

– Total path cost = 2+9 =11

• This might not be the optimal solution since the path

AC as path cost 4 (less than 11)

• Expand C to E

– Total path cost = 4+5 =9

• Path cost from A to D is 10 (greater than path cost, 9)

Hence optimal path is ACE

25Presented By: Tekendra Nath YogiIT 228 - Intro to AI

• The graph below shows the step-costs

for different paths going from the

start (S) to the goal (G).

• Use uniform cost search to find the

optimal path to the goal.

Presented By: Tekendra Nath Yogi 26

Home work: Uniform cost search

IT 228 - Intro to AI

Depth First Search

• DFS also begins by expanding the initial node.

• Looks for the goal node among all the children of the current node before using

the sibling of this node

• i.e. expand deepest unexpanded node(expand most recently generated deepest

node first.).

• The search tree generated by the DFS is shown in figure below:

27Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

• Here initial state is A and goal state is M

28Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

29Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

30Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

31Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

32Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

33Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

34Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

35Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

36Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

37Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example

• Expand deepest unexpanded node

38Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Depth-first search example
• Expand deepest unexpanded node

• But this type of search can go on and on, deeper and deeper into tree

search space and thus, we can get lost. This is referred to as blind alley.

39Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 40

Depth-limited search(Same as DFS if L= ∞)

• Depth limit search is depth-first search with depth limit L.

– i.e., nodes at depth L are treated as they have no successors.

• The depth limit solves the infinite path problem of DFS by placing limit on the

depth.

• Yet it introduces another source of problem if we are unable to find good guess

of L. Let d is the depth of shallowest solution.

– If L < d then incompleteness results because no solution within the depth limit.

– If L > d then not optimal.

IT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 41

Depth-limited search Example 1
• Depth limited search= DFS+ limit for the depth

– Let goal node= 11 and limit= 2

– Trace the path to the goal node using Depth limited search .

IT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 42

Depth-limited search Example 1
• Depth limited search= DFS+ limit for the depth

• No path is found from root node to goal node because L< d.
IT 228 - Intro to AI

Iterative deepening search

• It is a general strategy to find best depth limit L.

• It begin by performing DFS to a depth of zero, then depth of one, depth of

two , and so on until a solution is found or some maximum depth is reached.

• It is similar to BFS in that it explores a complete layer of new nodes at each

iteration before going to next layer.

• It is similar to DFS for a single iteration.

• It is preferred when there is a large search space and the depth of a solution is

not known.

• But it performs the wasted computation before reaching the goal depth.

4312/25/2018 By: Tekendra Nath Yogi

Iterative Deepening search example
• Here initial state is A and goal state is M.

• Let we don‟t know the depth of M then the Iterative deepening search proceeds

as follows:

44Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 45

Iterative deepening search l =0

IT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 46

Iterative deepening search l =1

IT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 47

Iterative deepening search l =2

IT 228 - Intro to AI

Presented By: Tekendra Nath Yogi 48

Iterative deepening search l =3

IT 228 - Intro to AI

Bidirectional search

• This search is used when a problem has a single goal state that is given

explicitly and all the node generation operators have inverses.

• So it is used to find shortest path from an initial node to goal node

instead of goal itself along with path.

• It works by searching forward from the initial node and backward from

the goal node simultaneously, by hoping that two searches meet in the

middle.

• Check at each stage if the nodes of one have been generated by the

other,. i.e., they meet in the middle.

• If so, the path concatenation is the solution.

Presented By: Tekendra Nath Yogi 49IT 228 - Intro to AI

Bidirectional search contd..

• Advantages:

– Only slight modification of DFS and

BFS can be done to perform this

search.

– Theoretically effective than

unidirectional search.

• Disadvantage:

– Problem if there are many goal states.

– Practically inefficient due to additional

overhead to perform intersection

operation at each point of search

Presented By: Tekendra Nath Yogi 50IT 228 - Intro to AI

Drawbacks of uninformed search :

• Criterion to choose next node to expand depends only on a global criterion:

level.

• Does not exploit the structure of the problem.

51Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Heuristic Search:

• Heuristic Search Uses domain-dependent (heuristic) information beyond the

definition of the problem itself in order to search the space more efficiently.

• Ways of using heuristic information:

– Deciding which node to expand next, instead of doing the expansion in a strictly

breadth-first or depth-first order;

– In the course of expanding a node, deciding which successor or successors to

generate, instead of blindly generating all possible successors at one time;

– Deciding that certain nodes should be discarded, or pruned, from the search

space.

5212/25/2018 By: Tekendra Nath Yogi

Contd…

• Informed Search Define a heuristic function, h(n), that estimates the

"goodness" of a node n.

• The heuristic function is an estimate, based on domain-specific information

that is computable from the current state description, of how close we are to a

goal.

• Specifically, h(n) = estimated cost (or distance) of minimal cost path from

state „n‟ to a goal state.

5312/25/2018 By: Tekendra Nath Yogi

Contd…

• A) Best-First Search:

– Best first search uses an evaluation function f(n) that gives an indication

of which node to expand next for each node.

– A key component of f(n) is a heuristic function, h(n),which is a additional

knowledge of the problem.

– Based on the evaluation function best first search can be categorized into

the following categories:

• Greedy best-first search

• A*search

5412/25/2018 By: Tekendra Nath Yogi

Contd…

• Greedy Best First Search :

– Greedy best first search expands the node that seems to be closest to the

goal node.

– Evaluation function based on Heuristic function is used to estimate

which node is closest to the goal node.

– Therefore, Evaluation function f(n) =heuristic function h(n)= estimated

cost of the path from node n to the goal node.

– E.g., hSLD(n) = straight-line distance from n to goal

– Note: g(root)= 0 and h(goal) = 0

5512/25/2018 By: Tekendra Nath Yogi

Contd…

• Example1 To illustrate Greedy Best- First Search:

– For example consider the following graph

– Straight Line distances to node G (goal node) from other nodes is given below:

– Let H(n)= Straight Line distance

– Now Greedy Search operation is done as below:
5612/25/2018 By: Tekendra Nath Yogi

Contd…
• Start at node „s‟, the start state

• Children of s= {B(4), D(5)}

• Therefore, best = B

5712/25/2018 By: Tekendra Nath Yogi

Contd…

• Children of B= {E(7), C(3)}

• Considered= {D(5), E(7), C(3)}

• Therefore, Best= C

5812/25/2018 By: Tekendra Nath Yogi

Contd…

• Children of C= {D(5), G(0)}

• Considered= {D(5), E(7), G(0)}

• Therefore, Best= G, is the goal node.

5912/25/2018 By: Tekendra Nath Yogi

Contd…
• A * Search :

– A* is a best first , informed search algorithm. The search begins at root node.

The search continues by visiting the next node which has the least

evaluation.

– It evaluates nodes by using the following evaluation function

• f(n) = h(n) + g(n) = estimated cost of the cheapest solution through n.

• Where, g(n): the actual shortest distance traveled from initial node to current

node , It helps to avoid expanding paths that are already expensive

• h(n): the estimated (or "heuristic") distance from current node to goal, it estimate

which node is closest to the goal node.

– Nodes are visited in this manner until a goal is reached.
6012/25/2018 By: Tekendra Nath Yogi

Contd…

• Example to illustrate A* Search:

– For example consider the following graph

– Straight Line distances to node G (goal node) from other nodes is given

below:

– Labels in the graph shows actual distance.

– Let H(n)= Straight Line distance

– Now A* Search operation is done as below

6112/25/2018 By: Tekendra Nath Yogi

Contd…
• A* algorithm starts at s, the start state.

• Children of S={B, D}

• Now, evaluation function for each child of S is:

– f(B) =g(B) + h(B) =9+4=13

– f(D)=g(D)+h(D)= 8+6=14

• Here, candidate node for expansion are{B, D}, among these candidate nodes

the node B is least evaluated, so it is selected for expansion.
6212/25/2018 By: Tekendra Nath Yogi

Contd…
• Child of B ={E, C}

• Now, evaluation for each child of B are

– F(E)= (9+8)+7=24

– F(c)=(9+7)+3=19

• Here, candidate nodes for expansion are{E,C, and D}

• Among these candidate the node D is least evaluated, so it is selected for expansion
63Presented By: Tekendra Nath Yogi

f(n)= 14H(n)= 4

IT 228 - Intro to AI

Contd….

• Child of D={G, C}

Evaluation for the child of D are

• Here, the candidate nodes for expansion are{ E, C,G and C}.

• Among these candidate the node C child of D is least

evaluated, so It is selected for expansion.
64Presented By: Tekendra Nath Yogi

H(n)= 6

IT 228 - Intro to AI

Contd…

• Child of C= {G,B}

Evaluation for the child of C are

• Here the candidate for expansion are{E,C,G,G, and B}.

• Among these candidate the node G, which is child of D is least evaluated, so

it is selected for expansion, but it is the goal node, hence we are done

65Presented By: Tekendra Nath Yogi

H(n)= 6

H(n)= 3

IT 228 - Intro to AI

Contd…

66Presented By: Tekendra Nath Yogi

H(n)= 6

H(n)= 3

IT 228 - Intro to AI

Contd…

• B) Local search algorithms:

– Local search algorithms operate using a single current node and move

only to neighbors of this node rather than systematically exploring paths

from an initial state. E.g. Hill climbing.

– These algorithms are suitable for problems in which all that matter is the

solution state, not the path cost to reach it. Typically, the paths followed

by the search are not retained.

– Although local search algorithms are not systematic, they have two key

advantages:

• They use very little memory.

• They can often find reasonable solutions in large or infinite state spaces for

which systematic algorithms are unsuitable.
6712/25/2018 By: Tekendra Nath Yogi

Contd…

• Hill Climbing Search:

– Hill climbing can be used to solve problems that have many solutions,

some of which are better than others.

– It starts with a random (potentially poor) solution, and iteratively makes

small changes to the solution, each time improving it a little. When the

algorithm cannot see any improvement anymore, it terminates.

– Ideally, at that point the current solution is close to optimal, but it is not

guaranteed that hill climbing will ever come close to the optimal solution.

– Note: The algorithm does not maintain a search tree and does not look

ahead beyond the immediate neighbors of the current state.

6812/25/2018 By: Tekendra Nath Yogi

Contd…

6912/25/2018 By: Tekendra Nath Yogi

Contd…

• Hill climbing suffers from the following problems:

– The Foot- hills problem(local maximum)

– The Plateau problem

– The Ridge problem

7012/25/2018 By: Tekendra Nath Yogi

Contd…

• Foot- Hill problem:

– Local maximum is a state which is better than all of its neighbors but is

not better than some other states which are farther away.

– At local maxima, all moves appear to make the things worse.

– This problem is called the foot hill problem.

– Solution: Backtrack to some earlier node and try going to different

direction.

7112/25/2018 By: Tekendra Nath Yogi

Contd…

• The Plateau problem:

– Plateau is a flat area of the search space in which a whole set of

neighboring states have the same value.

– On plateau, it is not possible to determine the best direction in which to

move by making local comparison.

– Such a problem is called plateau problem.

– Solution: Make a big jump in some direction to try to get a new section

of the search space .

7212/25/2018 By: Tekendra Nath Yogi

Contd…

• The Ridge problem:

– Ridge is an area of the search space which is higher than the surrounding areas

and that itself has a slope.

– Due to the steep slopes the search direction is not towards the top but towards the

side(oscillates from side to side).

– Such a problem is called Ridge problem.

• Solution: Apply two or more rules such as bi-direction search before doing

the test.

7312/25/2018 By: Tekendra Nath Yogi

Mean-End Analysis

• Mean end analysis is a problem solving technique. Allows us to solve the major

parts of a problem first and then go back and solve the smaller problems that

arise while assembling the final solution.

• Technique:

– The Mean End analysis process first detects the differences between current

state and the goal state.

– Once such a difference is isolated, an operator that can reduce the difference

has to be found.

– But sometimes it is not possible to apply this operator to the current state.

So, we try to get a sub- problem out of it and try to apply our operator to this

new state.

– If this also does not produce the desired goal state then we try to get second

sub-problem and apply this operator again. This process may be continued.

7412/25/2018 By: Tekendra Nath Yogi

Contd…
• Problem:

• Solution:

7512/25/2018 By: Tekendra Nath Yogi

Contd…

• Why it is called mean end analysis?

– Given a description of the desired state of the world(the end).

– It works by selecting and using operators that will achieve it(the means).

– Hence the name, mean end analysis(MEA).

7612/25/2018 By: Tekendra Nath Yogi

Contd…

• Mean End Analysis(Household Robot):

– Consider a simple household robot domain. Problem Given to the robot

is: Move a desk with two things on it from one room to another. The

objects on top must also be moved.

7712/25/2018 By: Tekendra Nath Yogi

Contd…
• The available operators are shown below along with their pre-conditions and results.

• Table below shows when each of the operators is appropriate:

7812/25/2018 By: Tekendra Nath Yogi

Contd…

The robot solves this problem as follows:

• The main difference between the initial state and the goal state would be the

location of the desk.

• To reduce this difference, either PUSH or CARRY could be chosen.

• If CARRY is chosen first, its preconditions must be met. This results in two

more differences that must be reduced:

– The location of the robot and the size of the desk.

– The location of the robot is handled by applying WALK, but there are no

operators that can change the size of an object, So this path leads to a dead-end.

7912/25/2018 By: Tekendra Nath Yogi

Contd…

• Following the other branch, we attempt to apply PUSH. Figure below shows

the robot‟s progress at this point.

Fig : The progress of mean end analysis method.

• Now the differences between A and B and Between C and D must be reduced.

8012/25/2018 By: Tekendra Nath Yogi

Contd…

• PUSH has preconditions:

– the robot must be at the desk, and

– the desk must be clear.

• The robot can be brought to the correct location by using WALK .

• And the surface of the desk can be cleared by two uses of the PICKUP,.

• But after one PICKUP, An attempt to do the second results in another

difference(the arm must be empty).

• PUTDOWN can be used to reduce the difference.

8112/25/2018 By: Tekendra Nath Yogi

Contd…

• Once PUSH is performed, the problem state is closed to the goal state, but not

quite. The object must be placed back on the desk. PLACE will put them

there. The progress of the robot at this point is as shown in figure below:

Fig: More progress on the mean end analysis method.

• The final difference between C and E can be reduced by using WALK to get

the robot back to the object followed by PICKUP and CARRY.

8212/25/2018 By: Tekendra Nath Yogi

Contd…
• Mean-End Analysis:(Monkey Banana Problem):

– The monkey is in a closed room in which there is a small Box.

– There is a bunch of bananas hanging from the ceiling but the monkey cannot reach

them.

– Assuming that the monkey can move the Box and if the monkey stands on the Box

the monkey can reach the bananas.

– Establish a method to instruct the monkey on how to capture the bananas.

8312/25/2018 By: Tekendra Nath Yogi

Contd…

• Representing the World:

– In the Monkey Banana problem we have:

• objects: a monkey, a box, the bananas, and a floor.

• locations: we‟ll call them a, b, and c.

• relations of objects to locations. For example:

– the monkey is at location a;

– the monkey is on the floor;

– the bananas are hanging;

– the box is in the same location as the bananas.

– Formally Representing the relations of objects to locations as:

– at(monkey, a).

– on(monkey, floor).

– status(bananas, hanging).

– at(box, X), at(bananas, X).
8412/25/2018 By: Tekendra Nath Yogi

Contd…
• Initial State:

at(monkey, a),

on(monkey, floor),

at(box, b),

on(box, floor),

at(bananas, c),

status(bananas, hanging).

• Goal State:

on(monkey, box),

on(box, floor),

at(monkey, c),

at(box, c),

at(bananas, c),

status(bananas, grabbed).

8512/25/2018 By: Tekendra Nath Yogi

Contd…

• All Operators:

8612/25/2018 By: Tekendra Nath Yogi

Operator Preconditions Results

go(X,Y) at(monkey,X) at(monkey, Y)

on(monkey, floor)

push(B,X,Y) at(monkey,X) at(monkey, Y)

at(B,X) at(B,Y)

on(monkey, floor)

on(B,floor)

climb_on(B) at(monkey,X) on(monkey, B)

at(B,X)

on(monkey,floor)

on(B,floor)

grab(B) on(monkey,box) status(B, grabbed)

at(box,X)

at(B,X)

status(B, hanging)

Contd…

• Instructions To the Monkey to Grab the banana:

– First of all Monkey should move form location a to location b.

• Go(a, b)

– Then push the Box form location b to location a.

• Push(B, b, a)

– Push the Box again from location a to location c.

• Push(B, a, c)

– Monkey should climb on the Box

• Climb_on(B)

– Then Grab the banana.

• Grab(B)

8712/25/2018 By: Tekendra Nath Yogi

Constraint satisfaction problems

• A CSP consists of three components: X, D and C

– X is a Finite set of variables {X1, X2, …, Xn }

– D is a set of Nonempty domain of possible values for each variable { D1,

D2, … Dn }

– C is a Finite set of constraints {C1, C2, …, Cm }

– Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2

8812/25/2018 By: Tekendra Nath Yogi

Contd…

• In CSP:

– State: A state is defined as an assignment of values to some or all

variables.

– Consistent assignment: consistent assignment is an assignment that does

not violate the constraints.

– An assignment is complete when every variable is assigned a value.

– A solution to a CSP is a complete assignment that satisfies all constraints

i.e., complete and consistent assignment.

8912/25/2018 By: Tekendra Nath Yogi

Contd…

• Example (Map-Coloring problem): Given, a map of Australia showing

each of states and territories. The task is color each region either red, green,

or blue in such a way that no neighboring regions have the same color.

9012/25/2018 By: Tekendra Nath Yogi

• This problem can be formulated as CSP as

follows:

– Variables: WA, NT, Q, NSW, V, SA, T

– Domains: Di = { red, green, blue}

– Constraints: adjacent regions must have different

colors

• e.g., WA ≠ NT

Contd…
• Solutions are complete and consistent assignments,

– e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue,

T = green

9112/25/2018 By: Tekendra Nath Yogi

Contd…

• CSP as a standard search problem:

– A CSP can easily expressed as a standard search problem, as

follows:

• Initial State: the empty assignment {}, in which all variables are

unassigned..

• Successor function: Assign value to unassigned variable provided that

there is not conflict.

• Goal test: the current assignment is complete and consistent.

• Path cost: a constant cost for every step.

9212/25/2018 By: Tekendra Nath Yogi

Contd…

• Constraint satisfaction search:

– For searching a solution of CSPs following algorithms can be used:

• Backtracking search: Works on partial assignments.

• Local search for CSPs: works on complete assignment.

9312/25/2018 By: Tekendra Nath Yogi

Contd…

• Backtracking search:

– The term backtracking search is used for a depth first search that chooses

values for one variable at a time and backtracks when a variable has no

legal values left to assign.

– The algorithm repeatedly choose an unassigned variable, and then tries all

values in the domain of that variable in turn, trying to find a solution.

– If an inconsistency is detected, then backtrack returns failure, causing the

previous call to try to another values.

9412/25/2018 By: Tekendra Nath Yogi

95

Backtracking example

Presented By: Tekendra Nath YogiIT 228 - Intro to AI

96

Backtracking example

Presented By: Tekendra Nath YogiIT 228 - Intro to AI

97

Backtracking example

Presented By: Tekendra Nath YogiIT 228 - Intro to AI

98

Backtracking example

Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Contd…

• Local search for CSPs:

– They use a complete state formulation:

• The initial state assigns a value to every variable, and the search

changes the value of one variable at a time because the initial guess

violates several constraints.

– E.g.:

• First randomly select any conflicted variable.

• Then choose the value of that conflicted variable that violates the

fewest constraints.

9912/25/2018 By: Tekendra Nath Yogi

Crypt-arithmetic Problem
• Many problems in AI can be considered as problems of constraint satisfaction,

in which the goal state satisfies a given set of constraint.

 Example of such a problem is Crypt-Arithmetic problem (a mathematical

puzzle), in which the goal state(solution) satisfies the following constraints:

– Values are to be assigned to letters from 0 to 9 only.

– No two letters should have the same value.

– If the same letter occurs more than once, it must be assigned the same digit each

time.

– The sum of the digits must be arithmetically correct with the added restriction that

no leading zeroes are allowed.

10012/25/2018 By: Tekendra Nath Yogi

Contd…

• Example1: Solve the following puzzle by assigning numeral (0-9) in such a

way that each letter is assigned unique digit which satisfy the following

addition.

10112/25/2018 By: Tekendra Nath Yogi

Contd…

• Solution: Here,

• Variables: {F, T, U, W, R, O, c1, c2, C3 }

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints: Alldiff (F,T,U,W,R,O)

• where c1, c2, and c3 are auxiliary variables representing the digit (0 or 1) carried over

into the next column.

10212/25/2018 By: Tekendra Nath Yogi

c3 c2 c1

Contd…
• Here we are adding two three letters words but getting a four letters word. This indicates

that F= c3=1

• Now, c2+T+T= O+ 10……. Because c3=1

• C2 can be 0 or 1 . Let c2=0 then T should be > 5 i.e T can be {6, 7,8,9}

• Let T= 9 then C2+T+T= O+10 0+9+9=O+10 from this O= 8

• Now O+O=R+10 8+8= R+10 From this R=6

• Now, c1+W+W=U here c1=1 and U and W can be {2,3,4,5,7}

• But , c2= 0 so let W= 2 then 1+2+2=U i.e., U=5

• Now replacing each letter in the puzzle by its corresponding digit and testing their

arithmetic correctness:

• This assignment satisfies all the constraint so this is the final solution

10312/25/2018 By: Tekendra Nath Yogi

Contd…

• Example2: Solve the following puzzle by assigning numeral (0-

9) in such a way that each letter is assigned unique digit which

satisfy the following addition.

• Solution: Here,

• Variables: {F,O,U,R,E,I,G,H,T, c1, c2, C3 ,c4 }

• Domains: {0,1,2,3,4,5,6,7,8,9}

• Constraints: Alldiff (F,O,U,R,E,I,G,H,T)

• where c1, c2, and c3 are auxiliary variables representing the digit (0 or 1) carried over

into the next column.

10412/25/2018 By: Tekendra Nath Yogi

Contd…
• Here we are adding two three letters words but getting a four letters word. This

indicates that E= c4=1 ….. Because E is left most letter so it should not be 0.

• Now c3+F+F= I+10 , here c3 can be 0 or 1 and F should be greater than 5. i.e

{6,7,8,9}

• Let c3= 0 and F= 9 then 0+9+9=I+10 from this I=8

• Now, c2+O+O=G…… since c3=0

• C2 can be 0 or 1 and O can be {2,3,4}. Let c2= 0 and O =2 Then G= 4.

• R+R= T here R can be {3,5,6,7}

• If we let R= 3 this leads to dead end so let R=5 then T=0 and c1=1

• C1+U+U=H here c1= 1 and c2=0 and U can be{3}

• Form this U=3 then H=7

10512/25/2018 By: Tekendra Nath Yogi

Contd…

• Initial problem state:

– S = ? M= ? C1 = ?

– E = ? O = ? C2 = ?

– N = ? R = ? C3 = ?

– D = ? E = ? C4 = ?

• Goal states: A goal state is a problem state in which all letters have been assigned a

digit in such a way that all constraints are satisfied

10612/25/2018 By: Tekendra Nath Yogi

Contd…

10712/25/2018 By: Tekendra Nath Yogi

Contd…

10812/25/2018 By: Tekendra Nath Yogi

Contd…

10912/25/2018 By: Tekendra Nath Yogi

Contd…

11012/25/2018 By: Tekendra Nath Yogi

Home Work

• Solve the following puzzles by assigning numeral (0-9) in such a way that

each letter is assigned unique digit which satisfy the following addition.

1.

2.

3.

4.

11112/25/2018 By: Tekendra Nath Yogi

Problem Reduction: AND/ OR Tree

• The basic intuition behind the method of problem reduction is:

– Reduce a hard problem to a number of simple problems and, when each of

the simple problems is solved, then the hard problem has been solved.

• To represent problem reduction we can use an AND-OR tree. An AND–OR

tree is a graphical representation of the reduction of problems to conjunctions

and disjunctions of sub-problems.

• Example:

112Presented By: Tekendra Nath YogiIT 228 - Intro to AI

represents the search space for solving the

problem P, using the problem-reduction

methods:
P if Q and R

P if S

Q if T

Q if U

Contd…

• Example1

• Example2:

113Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Contd….

• Searching AND/OR Tree:

• To find a solution in AND–OR tree, an algorithm similar to Best first search

algorithm is used but with the ability to handle AND arc appropriately.

• This algorithm evaluates the nodes based on the following evaluation function.

• If the node is OR node then cost function f(n)= h(n)

• If the node is AND node then cost function is the sum of costs in AND node.

– f(n) = f(n1) + f(n2) + …. + f(nk)= h(n1) + h(n2) + …. + h(nk)

– Where, n1, n2,…. Nk are AND nodes.

114Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Contd…
• Here, the number show the value of the heuristic function at that node.

• In the figure the minimal is B which is the value of 3. But B forms a part of the AND

tree so we need to consider the other branch also of this AND tree i.e., C which has a

weight of 4. So, our estimate now is (3+4) = 7.

• Now this estimate is more costlier than that of branch D i.e., 5. So we explore node

D instead of B as it has the lowest value.

• This process continues until either a solution is found or all paths led to dead ends,

indicating that there is no solution.

115Presented By: Tekendra Nath YogiIT 228 - Intro to AI

Adversarial Search(Game Playing)

• Competitive environments in which the agents goals are in conflict, give rise

to adversarial search, often known as games.

• In AI, games means deterministic, fully observable environments in which

there are two agents whose actions must alternate and in which utility values

at the end of the game are always equal and opposite.

– E.g., If first player wins, the other player necessarily loses

• This Opposition between the agent‟s utility functions make the situation

adversarial.

11612/25/2018 By: Tekendra Nath Yogi

Contd…

• Games as Adversarial Search:

– A Game can be formally defined as a kind of search problem with the

following elements:

• States: board configurations.

• Initial state: the board position and which player will move.

• Successor function: returns list of (move, state) pairs, each indicating

a legal move and the resulting state.

• Terminal test: determines when the game is over.

• Utility function: gives a numeric value in terminal states

– (e.g., -1, 0, +1 for loss, tie, win)

11712/25/2018 By: Tekendra Nath Yogi

Contd…

• Game Trees: Problem spaces for typical games represented as trees, in which:

– Root node: Represents the state before any moves have been made.

– Nodes: Represents possible states of the games. Each level of the tree has

nodes that are all MAX or all MIN; nodes at level i are of the opposite kind

from those at level i+1. and

– Arcs: Represents the possible legal moves for a player. Moves are

represented on alternate levels of the game tree so that all edges leading

from root node to the first level represent moves for the first(MAX) player

and edges from the first level to second represents moves for the

second(MIN) player and so on.

– Terminal nodes represent end-game configurations.

11812/25/2018 By: Tekendra Nath Yogi

Contd…
• Evaluation Function:

– An evaluation function is used to evaluate the "goodness" of a game

position.

– i.e., estimate of the expected utility of the game position

– The performance of a game playing program depends strongly on the

quality of its evaluation function.

– An inaccurate evaluation function will guide an agent toward positions

that turn out to be lost.

11912/25/2018 By: Tekendra Nath Yogi

Contd…

• A good evaluation function should:

• Order the terminal states in the same way as the true utility function:

• i.e., States that are wins must evaluate better than draws, which in

turn must be better than losses. Otherwise, an agent using the

evaluation function might err even if it can see ahead all the way to

the end of the game.

• For non-terminal states, the evaluation function should be strongly

correlated with the actual chances of winning.

• The computation must not take too long i.e., evaluate faster.

12012/25/2018 By: Tekendra Nath Yogi

Contd…

• An example (partial) game tree for Tic-Tac-Toe:

12112/25/2018 By: Tekendra Nath Yogi

• f(n) = +1 if the position is a win for

X.

• f(n) = -1 if the position is a win for

O.

• f(n) = 0 if the position is a draw.

Contd…
• There are two players denoted by X and O. They are alternatively writing their letter in

one of the 9 cells of a 3 by 3 board. The winner is the one who succeeds in writing three

letters in line.

• The game begins with an empty board. It ends in a win for one player and a loss for the

other, or possibly in a draw.

• A complete tree is a representation of all the possible plays of the game. The root node is

the initial state, in which it is the first player's turn to move (the player X).

• The successors of the initial state are the states the player can reach in one move, their

successors are the states resulting from the other player's possible replies, and so on.

• Terminal states are those representing a win for X, loss for X, or a draw.

• Each path from the root node to a terminal node gives a different complete play of the

game. Figure given above shows the search space of Tic-Tac-Toe.

12212/25/2018 By: Tekendra Nath Yogi

Mini-max search algorithm

• Mini-max search algorithm is a game search algorithm with the application of

DFS procedure.

• It assumes:

• Both the player play optimally from there to the end of the game.

• A suitable value of static evaluation(utility) is available on the leaf nodes.

• Given the value of the terminal nodes, the value of each node (Max and MIN) is

determined by (back up from) the values of its children until a value is

computed for the root node.

– For a MAX node, the backed up value is the maximum of the values associated

with its children

– For a MIN node, the backed up value is the minimum of the values associated with

its children

12312/25/2018 By: Tekendra Nath Yogi

Contd…

• Mini-max search Example:

12412/25/2018 By: Tekendra Nath Yogi

Contd…

12512/25/2018 By: Tekendra Nath Yogi

Contd…

12612/25/2018 By: Tekendra Nath Yogi

Contd…

12712/25/2018 By: Tekendra Nath Yogi

Contd…

• Limitations of Mini-max search:

– Mini-max search traverse the entire search tree but it is not always

feasible to traverse entire tree.

– Time limitations

12812/25/2018 By: Tekendra Nath Yogi

Alpha-beta pruning

• We can improve on the performance of the mini-max algorithm through

alpha-beta pruning.

• Basic idea: If a move is determined worse than another move already

examined, then there is no need for further examination of the node.

12912/25/2018 By: Tekendra Nath Yogi

• For Example: Consider node n in the tree.

• If player has a better choice at:

– Parent node of n

– Or any choice point further up

• Then n is never reached in play.

• So, When that much is known about n, it can

be pruned.

Contd…

• Example:

13012/25/2018 By: Tekendra Nath Yogi

Contd…

• Alpha-Beta pruning procedure:

– Traverse the search tree in depth-first order. During traversing Alpha and

Beta values inherited from the parent to child never from the children.

Initially alpha =-infinity and always try to increase, and beta=+infinity and

always try to decrease. Alpha value updates only at max node and beta value

update only at min node.

– Max player :

• Val> Alpha?(val is Value back up form the children of max player)

– Update Alpha

• Is Alpha>= Beta?

– Prune (called alpha cutoff)

• Return Alpha

– MIN player:

• Val< Beta? (val is Value back up form the children of min player)

– Update Beta

• Is Alpha>= Beta?

– Prune (called beta cutoff)

• Return Beta
13112/25/2018 By: Tekendra Nath Yogi

Contd…

• Alpha-Beta pruning example:

13212/25/2018 By: Tekendra Nath Yogi

Contd…

13312/25/2018 By: Tekendra Nath Yogi

Contd…

13412/25/2018 By: Tekendra Nath Yogi

Contd…

13512/25/2018 By: Tekendra Nath Yogi

Contd…

13612/25/2018 By: Tekendra Nath Yogi

Contd…

13712/25/2018 By: Tekendra Nath Yogi

Contd…

13812/25/2018 By: Tekendra Nath Yogi

Contd…

13912/25/2018 By: Tekendra Nath Yogi

Contd…

14012/25/2018 By: Tekendra Nath Yogi

Contd…

14112/25/2018 By: Tekendra Nath Yogi

Contd…

14212/25/2018 By: Tekendra Nath Yogi

Contd…

14312/25/2018 By: Tekendra Nath Yogi

Contd…

14412/25/2018 By: Tekendra Nath Yogi

Contd…

14512/25/2018 By: Tekendra Nath Yogi

Contd…

14612/25/2018 By: Tekendra Nath Yogi

Contd…

14712/25/2018 By: Tekendra Nath Yogi

Contd…

14812/25/2018 By: Tekendra Nath Yogi

Contd…

14912/25/2018 By: Tekendra Nath Yogi

Contd…

15012/25/2018 By: Tekendra Nath Yogi

Contd…

15112/25/2018 By: Tekendra Nath Yogi

Contd…

15212/25/2018 By: Tekendra Nath Yogi

Contd…

15312/25/2018 By: Tekendra Nath Yogi

Contd…

15412/25/2018 By: Tekendra Nath Yogi

Contd…

15512/25/2018 By: Tekendra Nath Yogi

Contd…

15612/25/2018 By: Tekendra Nath Yogi

Contd…

15712/25/2018 By: Tekendra Nath Yogi

Contd…

15812/25/2018 By: Tekendra Nath Yogi

Contd…

15912/25/2018 By: Tekendra Nath Yogi

Contd…

16012/25/2018 By: Tekendra Nath Yogi

Contd…

16112/25/2018 By: Tekendra Nath Yogi

Contd…

16212/25/2018 By: Tekendra Nath Yogi

Contd…

16312/25/2018 By: Tekendra Nath Yogi

Contd…

16412/25/2018 By: Tekendra Nath Yogi

Contd…

16512/25/2018 By: Tekendra Nath Yogi

Contd…

16612/25/2018 By: Tekendra Nath Yogi

Contd…

16712/25/2018 By: Tekendra Nath Yogi

Contd…

16812/25/2018 By: Tekendra Nath Yogi

Contd…

16912/25/2018 By: Tekendra Nath Yogi

Contd…

17012/25/2018 By: Tekendra Nath Yogi

Contd…

17112/25/2018 By: Tekendra Nath Yogi

Games of Chance

• In the game with uncertainty Players include a random element(roll dice, flip

a coin, etc.) to determine what moves to make

• i.e., Dice are rolled at the beginning of a player‟s turn to determine the

legal moves. Such games are called game of chance.

• Chance games are good for exploring decision making in adversarial

problems involving skill and luck.

17212/25/2018 By: Tekendra Nath Yogi

Contd…

• Game Trees with Chance Nodes:

• The game tree in the chance game include chance nodes in addition to

MAX and MIN nodes. Chance nodes (shown as circles) represent the dice

rolls.

•The branches leading from each chance node denote the possible dice rolls;

each branch is labeled with the roll and its probability.

17312/25/2018 By: Tekendra Nath Yogi

Max

min

Chance

Terminal node

Chance

Contd…

• Algorithm for chance Games:

• Generalization of minimax for games with chance nodes. Also known as

Expectiminimax give perfect play

– If the state is terminal node then Return the utility value.

– if state is a MAX node then return highest Expectiminimax – Value of

Successors

– if state is a MIN node then return lowest Expectiminimax – Value of

Successors

– if state is a CHANCE node then

•For chance nodes „C‟ over a max node, compute: epectimax(C) =

Sumi(P(di) * maxvalue(i))

•For chance nodes „C‟ over a min node compute: epectimin(C) =

Sumi(P(di) * minvalue(i))

17412/25/2018 By: Tekendra Nath Yogi

Contd…
• Example:

17512/25/2018 By: Tekendra Nath Yogi

What is Game Theory?

• Game theory is a study of how to mathematically determine the best strategy

for given conditions in order to optimize the outcome

• Finding acceptable, if not optimal, strategies in conflict situations.

• Abstraction of real complex situation

• Game theory is highly mathematical

• Game theory assumes all human interactions can be understood and navigated

by presumptions.

17612/25/2018 By: Tekendra Nath Yogi

Contd…
• Why is game theory important?

– All intelligent beings make decisions all the time.

– AI needs to perform these tasks as a result.

– Helps us to analyze situations more rationally and formulate an

acceptable alternative with respect to circumstance.

– Useful in modeling strategic decision-making

• Games against opponents

• Games against nature

– Provides structured insight into the value of information

17712/25/2018 By: Tekendra Nath Yogi

Homework

• Explain the differences and similarities between depth-first search and

breadth-first search. Give examples of the kinds of problems where each

would be appropriate.

• Explain what is meant by the following terms in relation to search methods:

– complexity

– completeness

– Optimality

• Provide a definition of the word “heuristic.” In what ways can heuristics be

useful in search? Name three ways in which you use heuristics in your

everyday life.

• Explain the components of the path evaluation function f(node) used by

A*. Do you think it is the best evaluation function that could be used? To

what kinds of problems might it be best suited? And to what kinds of

problems would it be worst suited?

12/25/2018 By: Tekendra Nath Yogi 178

Contd…
• What is alpha-beta pruning procedure? Solve the following problem by using

this procedure

17912/25/2018 By: Tekendra Nath Yogi

Contd…

• What are the different steps involved in simple problem solving?

• What is the main difference between Uninformed Search and

Informed Search strategies?

• What are the advantages and disadvantages of bidirectional

search strategy?

• What are the advantages of local search?

18012/25/2018 By: Tekendra Nath Yogi

Thank You !

181By: Tekendra Nath Yogi12/25/2018

