
	
	

1	
	 	

Unit	6:	Multiway	Trees	

	A	tree	is	defined	as	either	an	empty	structure	or	a	structure	whose	children	are	disjoint	trees	t1,	t2,…..tm	
.	According	to	this	definition,	each	node	of	this	kind	of	tree	can	have	more	than	two	children.	This	tree	is	
called	a	multiway	tree	of	order	m	or	an	m-way	tree.	

A	multiway	(m-way)	search	tree	of	order	m	or	an	m	way	search	tree,	is	a	multiway	tree	in	which	

1. Each	node	has	m	children	and	m-1	keys.	
2. The	keys	in	each	node	are	in	ascending	order.	
3. The	keys	in	the	first	i	children	are	smaller	than	the	ith	key.	
4. The	keys	in	the	last	m-i	children	are	larger	than	the	ith	key.	

The	m-way	 search	 trees	 play	 the	 same	 role	 among	m-way	 trees	 that	 binary	 search	 tree	 play	 among	
binary	trees,	and	they	are	used	for	the	same	purpose,	fast	information	retrieval	and	update.	

	

	

	

	

	

	

	

	

	

	

	 Figure:	A	4	-	way	Tree	

The	Family	of	B-	Tree	

The	basic	unit	of	I/O	operations	associated	with	the	disk	is	a	block.	The	entire	block	of	disk	is	retrieved	
while	I/O	operations	and	taken	to	memory.	Transferring	information	to	and	from	the	disk	is	on	the	order	
of	milliseconds.	On	the	other	hand,	the	CPU	processes	data	on	the	order	of	microseconds,	1000	times	
qwwfaster.	 It	 shows	 that	 processing	 information	 on	 secondary	 storage	 can	 significantly	 decrease	 the	
sped	of	a	program.	

50	 60	 80	

30	 35	 58	 59	 63	 70	 73	 100	

52	 54	 61	 62	

57	

56	55	

	
	

2	
	 	

If	a	program	constantly	uses	information	stored	in	secondary	storage,	the	characteristics	of	this	storage	
have	to	be	taken	into	account	when	designing	the	program.		For	example,	a	binary	search	tree	can	be	
spread	over	many	different	blocks	on	a	disk	so	that	averages	of	two	blocks	have	to	be	accessed.	When	
the	binary	tree	is	used	frequently	in	a	program	these	accesses	can	significantly	slow	down	the	execution	
time	of	 the	 program.	Also,	 inserting	 and	deleting	 keys	 in	 this	 tree	 require	many	blocks	 accesses.	 The	
binary	search	tree,	which	is	such	an	efficient	tool	when	it	resides	entirely	in	memory,	turns	out	to	be	an	
encumbrance.	 In	 the	 context	 of	 secondary	 storage,	 its	 otherwise	 good	performance	 counts	 very	 little	
because	 the	 constant	 accessing	 of	 disk	 blocks	 that	 this	 method	 causes	 severely	 hampers	 this	
performance.	

	 	 	

	

	

	 	

	

	

Figure..	

To	access	a	large	amount	of	data	at	one	time	than	to	jump	from	one	position	on	the	disk	to	another	
position	 to	 transfer	 small	 portions	 of	 data,	 the	 new	 trees	 such	 as	 B-tree,	 B*-tree	 and	B+	 -tree	were	
introduced	

B-Trees:	

In	a	database	programs	where	most	of	 information	 is	 stored	on	disks	or	 tapes,	 the	 time	 for	accessing	
secondary	storage	can	be	significantly	reduced	by	proper	choice	of	data	structures.	B-Trees	are	one	such	
approach.	

A	B–Tree	operates	closely	with	secondary	storage	and	can	be	tuned	to	reduce	the	impediments	imposed	
by	this	storage.	One	important	property	of	B	–Trees	is	the	size	of	each	node,	which	can	be	made	as	large	
as	 the	 size	 of	 a	 block.	 The	 number	 of	 keys	 in	 one	 can	 vary	 depending	 on	 the	 size	 of	 the	 keys,	
organization	of	the	data,	and	of	course,	on	the	size	of	a	block.	Block	size	varies	for	each	system.	It	can	be	
512	bytes,	4KB,	or	more,	block	 size	 is	 the	 size	of	each	node	of	a	B	–Tree.	The	amount	of	 information	
stored	in	one	node	of	the	B-Tree	can	be	rather	large.	

	 	

	
	

3	
	 	

A	B	–Tree	of	order	m	is	a	multiway	search	tree	with	the	following	properties:	

1. The	root	has	at	least	two	subtrees	unless	it	is	a	leaf.	
2. Each	 non-root	 and	 non-	 leaf	 node	 holds	 k-1	 keys	 and	 k	 references	 to	 subtrees	 where																						

Γ	m/2	┐	≤	k	≤	m.	
3. Each	leaf	node	holds	k-1	keys	where┌	m/2┐	≤	k	≤	m	
4. All	the	leaves	are	on	the	same	level.	

According	 to	 these	 conditions,	 a	 B	 –Tree	 is	 always	 at	 least	 half	 full,	 has	 few	 levels	 and	 is	 perfectly	
balanced.	

A	node	of	a	B	–Tree	is	usually	implemented	as	class	containing	an	array	of	m-1	cells	for	keys,	and	m	cell	
array	of	references	to	other	nodes,	and	possibly	other	information	facilitating	tree	maintenance,	such	as	
the	number	of	keys	in	a	node	and	a	leaf/	non	lean	flag	as	in	

	

Inserting	a	key	into	a	B-	Tree	

Both	insertion	and	deletion	operations	appear	to	be	somewhat	challenging	if	we	remember	that	all	have	
to	be	at	the	same	level.	Implementing	insertion	becomes	easier	when	the	strategy	of	building	a	tree	is	
changed.	Insertion	into	B-Tree	is	different	from	insertion	into	BST.	

B-Tree	is	built	from	the	bottom	up	so	that	the	root	is	an	entity	always	in	flux,	and	only	at	the	end	of	all	
insertions,	we	can	know	the	contents	of	the	root.		In	this	process,	given	an	incoming	key,	we	go	directly	
to	a	leaf	and	place	it	there,	if	there	is	room.	When	the	leaf	is	full,	another	leaf	is	created,	the	keys	are	
divided	between	these	 leaves,	and	one	key	 is	promoted	to	the	parent.	 If	 the	key	 is	 full,	 the	process	 is	
repeated	until	the	root	is	reached	and	a	new	root	is	created.	

To	approach	 the	problem	more	systematically,	 there	are	 three	common	situations	encountered	when	
inserting	a	key	into	a	B-Tree.	

1. A	key	is	placed	in	a	leaf	that	still	has	some	room.	
	

	
	

	
	

4	
	 	

2. The	leaf	in	which	a	key	should	be	placed	is	full	then	the	leaf	is	split,	creating	s	new	leaf,	and	half	of	
the	keys	are	moved	from	the	full	leaf	to	the	new	leaf.	But	the	new	leaf	has	to	be	incorporated	into	
the	B-Tree.	The	middle	key	is	moved	to	the	parent,	and	a	reference	to	the	new	leaf	is	placed	in	the	
parent	as	well.	The	same	procedure	can	be	 repeated	 for	each	 internal	node	of	 the	B	Tree	so	 that	
each	such	split	adds	one	more	node	to	the	B-Tree.	Moreover,	such	a	split	guarantee	that	each	leaf	
never	has	less	than	┌	m/2┐-1	keys.	

	

3. A	special	case	arises	if	the	root	of	the	B-Tree	is	full.	In	this	case,	a	new	root	and	a	new	sibling	of	the	
existing	root	have	to	be	created.	This	split	results	in	two	new	nodes	in	the	B-Tree.	
Example:	Insert	13	

	 	

	
	

5	
	 	

An	algorithm	for	inserting	keys	in	B-Trees	as	follows:	

BTreeInsert(K)	
					find	a	leaf	node	to	insert	K	
									while(true)	
														find	a	proper	position	in	array	keys	for	K;	
													if	node	is	not	full	
																			insert	K	and	increment	keyTally;	
																			return;	
													else		
																			split	node	into	node1	and	node2;	
																			distribute	keys	and	references	evenly	between	node1	and	node2	and		
																			initialize	properly	their	keyTally’s	
																			K	=	middle	key	
																			if	node	was	the	root	
																									create	a	new	root	as	parent	of	node1	and	node2;	
																									put	K	and	references	to	node1	and	node2	in	the	root,	and	set	its	keyTally	to	1;	
																								return;	
																			else	node	=	its	parent;	//	and	now	process	the	node’s	parent;		

	

	
	

6	
	 	

Create	a	B-Tree	of	order	5	from	the	following	set	of	data:	8	14	2	15	3	1	16	6	5	27	37	18	25	7	13	20	22	23	24	

	

	

	
	

7	
	 	

Create	a	B-Tree	of	order	5	from	the	following	set	of	data:	1,	7,	6	,	2,	11,	4,	8,	13,10,	5,	19	,	9,	18,	24	

Insert:	1,	7,	6	,	2	

	

Insert	11:	Node	is	full,	split	the	node	at	6	

	

	

	

Insert	4,	8,	13	

	

	

	

Insert	10	:	Node	is	full,	split	the	node	at	median	10.	It	is	will	be	joined	with	6	in	root	node.	

	

	

	

	

Insert	5	19	9	18	

	

	

	

Insert	24:	The	node	is	full,	split	the	node	at	the	median	18,	and	it	will	be	joined	with	root	node.	

	

	

	

	 	

1	 2	 7	6	

1	 2	 		

6	 	 		

7	 11	 		

1	 2	 	4	

6	 	 		

7	 8	 13	11	

7	 8	 		1	 2	 	4	

6	 10	 		

11	 13	 		

7	 8	 	9	1	 2	 5	4	

6	 10	 		

11	 13	 19	18	

7	 8	 	9	1	 2	 5	4	

6	 10	 	18	

11	 13	 19	18	

	
	

8	
	 	

Deleting	a	node	from	a	B-	Tree	

Deletion	 is	to	a	great	extent	a	reversal	of	 insertion,	although	it	has	more	special	cases.	Care	has	to	be	
taken	 to	 avoid	 allowing	 any	 node	 to	 be	 less	 than	 half	 full	 after	 a	 deletion.	 This	 means	 that	 nodes	
sometimes	have	to	be	merged.	

In	deletion,	there	are	two	main	cases:	deleting	a	key	from	a	leaf	and	deleting	a	key	from	a	nonleaf	node.	

In	the	later	cases	we	use	a	procedure	similar	to	deleteByCopying()	used	for	binary	search	trees.	

1. Deleting	a	key	from	a	leaf	
1.1 If,	after	deleting	a	key,	the	leaf	is	at	least	half	full	and	only	keys	greater	than	K	are	moved	to	

the	left	to	fill	the	hole,	this	is	the	inverse	of	insertion’s	case	1.	
1.2 If,	deleting	K,	the	number	of	keys	in	the	leaf	is	less	than	┌m/2┐-1	causing	an	underflow.	

1.2.1 If	there	is	a	left	or	right	sibling	witth	the	number	of	keys	exceeding	the	minimal	┌m/2┐-
1,	then	all	keys	from	this	leaf	and	this	sibling	are	redistributed	between	between	them	
by	moving	 the	 seperator	 key	 from	 the	 parent	 to	 the	 leaf	 and	moving	 the	middle	 key	
from	the	node	and	the	sibling	combined	to	the	parent.	

1.2.2 If	the	leaf	underflows	and	the	number	of	keys	in	its	siblings	is	┌m/2┐-1,	then	the	leaf	and	
a	 sibling	 are	merged;	 the	 keys	 from	 the	 leaf,	 from	 its	 sibling,	 and	 the	 seperating	 key	
from	the	parent	are	all	put	in	the	leaf,	and	the	sibling	node	is	discarted.	The	keys	in	the	
parent	are	moved	if	a	hole	appears.	This	can	initiate	a	chain	of	operations	if	the	parent	
underflows.	The	parent	is	now	treated	as	though	it	were	a	leaf	and	either	step	1.2.2	is	
repeated	until	step	1.2.1	can	be	executed	or	the	root	of	the	tree	has	been	reached.	This	
is	the	inverse	of	insertion’s	case	2.	

1.2.2.1 A	particular	case	results	in	merging	a	leaf	or	nonleaf	with	its	sibling	when	its	parent	
is	 the	 root	with	only	one	key.	 In	 this,	 case	 the	keys	 from	 the	node	and	 its	 sibling,	
along	with	the	only	key	of	the	root,	are	put	in	the	node,	which	becomes	a	new	root,	
and	both	the	sibling	and	the	old	root	nodes	are	discarted.	This	is	the	only	case	when	
two	nodes	disappear	at	one	time.	Also	the	height	of	the	tree	 is	discreased	by	one.	
This	is	the	inverse	of	insertion’s	case	3.	

2. Deleting	 a	 key	 from	 a	 non	 leaf.	 This	 may	 lead	 to	 a	 problems	 with	 tree	 reorganization.	
Therefore,	deletion	from	a	nonleaf	 is	 reduced	to	deleting	a	key	 from	a	 leaf.	The	key	to	be	
replaced	by	its	immediare	predecessor	(the	successor	could	also	be	used),	which	can	only	be	
found	in	a	leaf.	This	successor	key	is	deleted	from	the	leaf,	which	brings	us	to	the	preceeding	
case	1	

	 	

	
	

9	
	 	

The	deletion	algorithm	is	as	follows:	

BtreeDelete(k)	
Node	=	BTreeSearch(k,root);	
If(node!=null)	
If	node	is	not	a	leaf	
Find	a	leaf	with	the	closest	predecessor	S	of	K	
Copy	S	over	K	in	node	
Node	=	the	leaf	containing	S	
Delete	S	from	node	
While(true)	
If	node	does	not	overflow	
Return;	
Else	if	there	is	a	sibling	of	node	with	enough	keys	
Redistribute	the	keys	between	node	and	its	siblings	
Return;	
Else	if	node’s	parent	is	the	root	
If	the	parent	has	only	one	key	
Merge	node,	its	sibling,	and	the	parent	to	form	a	new	root;	
Else	merge	node	and	its	sibling;	
Return;	
Else	merge	node	and	its	sibling	
Node	=	its	parent;	
	
	
	 	

	
	

10	
	 	

Deleting	keys	from	a	B-Tree	

	

B-	trees,	according	to	their	definition,	are	guaranteed	to	be	at	least	50	percent	full,	so	it	may	happen	
that	50	percent	of	the	space	is	basically	wasted.	If	this	happens	too	often,	then	the	definition	must	be	
reconsidered	or	some	other	restrictions	imposed	on	these	B-	trees.	Analysis	and	simulations,	however,	
indicate	that	after	a	series	of	numerous	random	insertions,	the	B-tree	is	approximately	69	percent	full,	
after	which	the	changes	in	the	percentage	of	occupied	cells	are	very	small.	But	it	is	very	unlikely	that	the	
B-tree	will	even	be	filled	to	the	brim,	so	some	additional	stipulations	are	in	order.	

	
	

11	
	 	

	

B*-Tree		

Because	each	node	of	B-tree	 represents	 a	block	of	 secondary	memory,	 accessing	one	node	means	 to	
access	 of	 secondary	memory,	which	 is	 expensive	 compared	 to	 accessing	 keys	 in	 the	 node	 residing	 in	
primary	memory.	Therefore,	the	fewer	nodes	that	are	created,	the	better.	

A	B*-tree	is	a	variant	of	the	B-tree	and	was	introduced	by	Donald	Knuth	and	named	by	Douglas	Comer.	
In	a	B*-tree,	all	the	nodes	except	the	root	are	required	to	be	at	least	two	thirds	full,	not	just	half	full	as	
in	a	B-tree.	More	precisely,	 the	number	of	keys	 in	all	non-root	nodes	 in	a	B-tree	of	order	 is	now	k	for	
[2m-1]/3≤k≤m-1.	 The	 frequency	of	 node	 splitting	 is	 decreased	by	delaying	 a	 split,	 and	when	 the	 time	
comes,	 by	 splitting	 two	 nodes	 into	 three,	 not	 one	 into	 two.	 The	 average	 utilization	 of	 B+-tree	 is	 81	
percent.	

A	split	in	a	B-tree	is	delayed	by	attempting	to	redistribute	the	keys	between	a	node	and	its	sibling	when	
the	node	overflows.	

Consider	the	following	example:	

The	given	 figure	contains	an	example	of	a	B*-tree	of	order	9.	The	key	6	 is	 to	be	 inserted	 into	 the	 left	
node,	which	is	already	full.	Instead	of	splitting	the	node,	all	keys	from	this	node	and	its	sibling	are	evenly	
divided	and	the	median	key,	key	10,	is	put	into	the	parent.	It	is	be	noted	that	this	evenly	divides	not	only	
the	keys,	but	also	the	free	space	so	that	the	node	which	was	full	is	now	able	to	accommodate	one	more	
key.	

	

	

	

	

	 	 	 	 	 	 	

Insert	6	

	

	

	

	

16	

2	 5	 12	7	1	 9	 10	 18	 25	 27	 28	 30	0	

10	

2	 5	 	6	1	 7	 9	 12	 16	 18	 25	 27	 28	 30	0	

	
	

12	
	 	

Insert	29	8	

	

Insert	4		

	

	

	

	

	

If	the	sibling	is	also	full,	a	split	occurs.	One	new	node	is	created,	the	keys	from	the	node	and	its	sibling	
are	evenly	divided	among	three	nodes,	and	two	separating	keys	are	put	into	the	parent.	All	three	nodes	
participating	in	the	split	are	guaranteed	to	be	two-thirds	full.	

It	is	easy	to	note	that,	as	may	be	expected,	this	increase	of	a	fill	factor	can	be	done	is	a	variety	of	ways,	
and	some	database	systems	allow	the	user	to	choose	a	fill	factor	between	0.5	and	1.	In	particular,	a	B-
tree	whose	nodes	are	 required	 to	be	at	 least	75	percent	 full	 is	 called	a	B**	 tree.	The	 later	 suggests	a	
generalization:	A	Bn-tree	is	B-tree	whose	nodes	are	required	to	be	(n+1)/	(n+2)	full.	

	

B+-Trees	

Because	one	node	of	a	B-tree	represents	one	secondary	memory	page	or	block,	the	passage	from	one	
node	to	another	requires	a	time	consuming	page	change.	Therefore,	we	would	like	to	make	as	few	node	
accesses	as	possible.		The	problem	occurs	int	B-tree	to	print	all	the	keys	in	ascending	order.	An	inorder	
tree	 traversal	 can	 be	 used	 but	 for	 non-terminal	 nodes,	 only	 one	 key	 is	 displayed	 at	 a	 time	 and	 then	
another	page	has	 to	be	accessed.	 	 Therefore,	we	need	 to	enhance	B	 trees	 to	allow	us	 to	access	data	
sequentially	in	a	faster	manner	than	using	inorder	traversal.	A	B+-tree	offers	a	solution.	

In	a	B	–tree,	references	to	data	are	made	from	any	node	of	the	tree,	but	in	a	B+-tree,	these	references	
are	made	only	from	the	leaves.	The	internal	nodes	of	a	B+-	tree	are	indexes	for	fast	access	of	data;	this	
part	of	tree	is	called	an	index	set.	The	leaves	have	a	different	structure	than	other	nodes	of	the	B+-	tree,	
and	usually	they	are	linked	sequentially	to	form	a	sequence	set	so	that	scanning	this	list	of	leaves	results	
in	data	given	in	ascending	order.	Hence,	a	B-tree	is	truly	a	B	plus	tree.	It	 is	an	index	implemented	as	a	
regular	B-tree	plus	a	linked	list	of	data.	

The	internal	nodes	store	keys,	references	to	other	nodes,	and	a	key	count.	Leaves	store	keys,	references	
to	records	in	a	data	file	associated	with	the	keys,	and	references	to	the	next	leaf.	

10	

2	 5	 9	6	1	 7	 8	 12	 16	 18	 25	 27	 28	 29	0	 30	
16	6	

2	 4	 	5	1	 	 	 	30	18	 25	 27	 28	 29	0	 7	 8	 9	 12	10	

	
	

13	
	 	

Operations	on	B+-trees	are	not	very	different	from	operations	on	B-trees.		Inserting	a	key	into	a	leaf	that	
has	some	room	requires	putting	the	keys	of	this	level	in	order.	No	changes	are	made	in	the	index	set.	If	a	
key	is	inserted	into	a	full	leaf,	the	leaf	is	split,	the	new	leaf	node	is	included	in	the	sequence	set,	all	keys	
are	 distributed	 evenly	 between	 the	 old	 and	 the	 new	 leaves,	 and	 the	 first	 key	 from	 the	 new	 node	 is	
copied	 to	 the	parent.	 If	 the	parent	 is	not	 full,	 this	may	 require	 local	 reorganization	of	 the	keys	of	 the	
parent.	If	the	parent	is	full,	the	splitting	process	is	performed	the	same	way	as	in	B-trees.	After	all,	the	
index	set	is	a	B-tree.	In	particular,	keys	are	moved,	not	copied,	in	the	index	set.	

Deleting	 a	 key	 from	 a	 leaf	 leading	 to	 no	 underflow	 requires	 putting	 the	 remaining	 keys	 in	 order.	 No	
changes	are	made	to	the	index	set.	 In	particular,	if	a	key	that	occurs	only	in	a	leaf	is	deleted,	then	it	is	
simply	deleted	from	the	 leaf	but	can	remain	 in	the	 internal	node.	The	reason	is	that	 it	still	serves	as	a	
proper	guide	when	navigating	down	the	B+-	tree	because	 it	still	properly	separates	keys	between	two	
adjacent	children	even	if	the	separator	itself	does	not	occur	in	either	of	the	children.		

When	the	deletion	of	a	key	from	a	leaf	causes	an	underflow,	then	either	the	keys	from	this	leaf	or	the	
keys	 of	 a	 sibling	 are	 redistributed	 between	 this	 leaf	 and	 its	 sibling	 or	 the	 leaf	 is	 deleted	 and	 the	
remaining	 keys	 are	 included	 in	 its	 sibling.	 After	 deleting	 the	 number	 2,	 an	 underflow	occurs	 and	 two	
leaves	are	combined	to	form	one	leaf.	The	separating	key	 is	removed	from	the	parent	and	keys	 in	the	
parent	 are	 put	 in	 order.	 Both	 these	 operations	 require	 updating	 the	 separator	 in	 the	 parent.	 Also,	
removing	a	leaf	may	trigger	merges	in	the	index	set.	

Insertion		

	

	

	

	 	

	

	 	

	

	

Insert	6	

	

	

	 	

29	 	

1	 2	 8	 10	 11	 13	 15	

11	

26	19	

19	

29	 	

6	 19	

26	19	

11	

1	 2	 	 	 11	 13	 15	10	8	6	

	
	

14	
	 	

	

	

	

Deletion	

	

	

	

	

	

	

Delete	6	

	

	

	

	

Delete	2	

	

Delete	2	

	

	

	

	

	

	

	

29	 	

6	 19	

26	19	

11	

1	 2	 	 	 11	 13	 15	10	8	6	

29	 	

6	 19	

26	19	

11	

1	 2	 	 	 11	 13	 15	10	8	

29	 	

1	 8	 10	 	 11	 13	 15	

11	

26	19	

19	

	
	

15	
	 	

	

