
Searching operation scans an existing list to learn whether a number is in it. We implement this

operation with the Boolean method isInList().

-The method uses a temporary variable tmp.

-List starting from the head node

-The number stored in each is compared to the number being sought.

-Otherwise, tmp is updated to tmp.next.

-After reaching the last node and executing tmp=tmp.next, tmp becomes null which indicates

number is not in the list

- If tmp is not null number is found and isInList() is returns true, Otherwise isInList() returns

false.

Defining a node class of a singly linked list: -

c l as s Node
{
 i nt da t a ;
 Node next ;
 Node(i nt da t a)
 {
 t hi s . da t a=dat a ;
 next =nul l ;
 }
}

Doubly Linked List

A doubly link list is a data structure in which every node in the list has two reference field.

1. One to the successor.
2. Another to the predecessor

A doubly linked list can be traversed in both direction

Function to add a node at the beginning of DLL:-

voi d add_f i rst
{
 Node newnode=new Node(10) ;
 newnode. next =head;
 head. previ ous=newnode;
 head=newnode;
}

Funciton to add node at the end of DLL:-

voi d add_f i rst
{
 Node newnode=new Node(10) ;
 Node t mp=t ai l ;
 newnode. next =nul l ;
 newnode. previ ous=t mp;
 t mp. next =newnode;
 t ai l =newnode;

}

Function to add node at any point in DLL

cl ass addi ngat anyposi t i on
{
 Node newnode=new Node(100) ;
 Node current =nul l ;
 i f (current ==t ai l)
 {
 newnode next =nul l ;
 t ai l =newnode;

 }
 el se
 {
 current . next =newnode. next ;
 current . next . previ ous=newnode. next ;
 }
 current . next =newnode;
 newnode. previ ous=current ;
}

Funciton to delete 1st node of DLL

c l as s de l e t e i ngf r om1s t
{
 i f (i s Empt y())
 {
 r e t ur n 0;
 }
 i f (head==t a i l)
 {
 head=t a i l =nul l ;
 }
 e l s e
 {
 head=head. next ;
 head. pr evi ous =nul l ;
 }

}

Funciton to delete Last node of DLL

c l as s de l e t e i ngf r omLas t
{
 i f (i s Empt y())
 {
 r e t ur n 0;
 }
 i f (head==t a i l)
 {
 head=t a i l =nul l ;
 }
 e l s e
 {
 t a i l =t a i l . pr evi ous ;
 t a i l . next =nul l ;
 }

}

Funciton to delete node after any position of DLL

Circular Linked List

A circular linked list is a data structure in which every node has a successor.

Circular linked list is used where we need nodes to form a ring.

Types of circular linked list:-

1. Circular singly linked list
2. Circular doubly linked list

Function to add a node at beginning of CSLL

cl ass i nsert _at _f ront ()
{
 Node newnode=new Node(2) ;
 i f (i sEmpt y())
 {
 head=t ai l =newnode;
 }
 el se
 {
 newnode. next =head;
 t ai l . next =newnode;
 head=newnode;
 }
}

Function to add a node at last of CSLL

cl ass i nsert _at _l ast ()
{
 Node newnode=new Node(5) ;
 i f (i sEmpt y())
 {
 head=t ai l =newnode;
 }
 el se
 {
 t ai l . next =newnode;
 newnode. next =head;
 t ai l =newnode;
 }
}

Function to delete first node of CSLL

c l as s de l e t e_f i r s t ()
{
 i f (head==t a i l)
 head=t a i l =nul l ;
 e l s e
 {
 head=head. next ;
 t a i l . next =head;

}
}

Function to delete first node of CSLL

c l as s de l e t e_l as t ()
{
 i f (head==t a i l)
 head=t a i l =nul l ;
 e l s e
 {
 Node t mp=head;
 Whi l e(t mp. next ! =t a i l)
 {
 t mp=t mp. next ;

}
t a i l =t mp;
t a i l . next =head;

}
}

Circular doubly linked list

Function to add a node at beginning of CDLL

cl ass i nsert at f i rst
{
 Node newnode=new Node(6) ;
 i f (i sEmpt y())
 {
 head=t ai l =newnode;
 }
 el se
 {
 newnode. next =head;
 head. previ ous=newnode;
 newnode. previ ous=t ai l ;
 t ai l . next =newnode;
 head=newnode;
 }
}

Function to add a node at last of CDLL

cl ass i nsert at l ast
{
 Node newnode=new Node(6) ;
 i f (i sEmpt y())
 {
 head=t ai l =newnode;
 }
 el se
 {
 newnode. next =head;
 head. previ ous=newnode;
 newnode. previ ous=t ai l ;
 t ai l . next =newnode;
 t ai l =newnode;
 }
}

Function to delete a node at begining of CDLL

c l as s de l e t ef r om1s t
{
 i f (i s Empt y())
 {
 r e t ur n 0;
 }
 i f (head=t a i l)
 {
 head=t a i l =nul l ;
 }
 e l s e
 {
 head=head. next ;
 head. pr evi ous =t a i l ;
 t a i l . next =head;
 }
}

Sk ip L ist

A skip list is a variant of ordered linked list that makes a non-sequential search possible.

Self or ga n izin g list

 A list can be organized by organized following four ways

1. Move to Front method.

After the desired element is located, put it at the beginning of the list.

2. Transpose Method

After the desired element is located, swap it with its predecessor unless it is at the head of

the list.

3. Count Method

4. Ordering Method

Order the list using certain criteria.

Unit 3: Stack & Queue

 Stack is a linear data structure that can be accessed only at one of its ends for storing and
retrieving data.

Stack is a LIFO structure,

E.g.: - piles of trays in cafeteria.

Operations of stack

1. clear(): clears the stack.
2. isEmpty(): check to see if stack is empty.
3. isFull(): check to see if stack is Full.
4. push(el): put an element el at the top of stack.
5. pop(): take the topmost element of a stack.
6. topEl(): return the topmost element without removing it.

Push operation

=> if stack is full, print overflow

Algorithm:

1. If stack is full, print overflow
2. set top= top+1,
3. stack[top]=item,
4. return

Function/method:

Voi d push(i nt st ack[] , i nt t op, i nt i t em, i nt si zes)
{
 i f (t op==si ze- 1)
 {
 Syst em. out . pri nt l n(“St ack overf l ow”) ;
 }

el se
 {
 t op=t op+1;
 st ack[t op] =i t em;
 }
}

Pop operation

=> if stack is empty, print underflow

Algorithm:

1. If stack is empty, print underflow

2. Item=stack[top];

3. top=top-1;

4. return

Function/method:

Voi d pop(i nt s t ack[] , i nt t op, i nt i t em, i nt s i zes)
{
 i f (t op==- 1)
 {
 Sys t em. out . pri nt l n(“St ack underf l ow”) ;
 }

e l s e
 {
 i t em=s t ack[t op] ;
 t op=t op- 1;
 }
}

Application of stack

1. Delimiter matching

Algorithm:

1. Delimeter_matching(file)

2. while not end of file

3. if ch is ‘(‘,‘[‘, or ‘{‘

4. push(ch);

5. else if ch is ‘/’

6. read next character

7. if this character is ‘*’

8. skip all characters until ‘*/’ is found and report an error if the end of file is reached before

‘*/’ is encountered;

9. else ch=the character read in ;

10. continue;

11. else if ch is ‘)‘,‘]‘, or ‘}‘

12. if ch and poped of delimeter do not match;

13. failure

14. else

15. read next character ch from file;

16. if stack is empty

17. success;

18. else

19. failure;

2. Adding two large numbers

Algorithm:

1. Adding large numbers ()

2. Read the numerical of the first number and store the numbers corresponding to them on

one stack;

3. Read the numerical of the second number and store the numbers corresponding to them

on another stack

4. Result=0;

5. While at least one stack is not empty

6. Pop a number from each non-empty stack and add them to result;

7. Push the unit part on the result stack;

8. Store carry in result;

9. Push carry on the result stack if it is not zero

10. Pop numbers from the result stack and display them;

Q u eu e

 Queue is a linear data structure where operations of insertion and removal are performed

at separate ends known as rear and front.

 It is a first in first out structure

 Whenever is new element is added to the queue, rear pointer is used.

 During insertion operation rear is increment by 1. And data is stored in the queue at that

location indicated by rear.

 The front pointer is used to remove an element from the queue

 The process of inserting and element at the last of the queue is called enqueue.

 The process of removing the first element of a queue is called dequeuer.

Operations of queue

Clear(); clear the queue

isEmpty(): check to see if queue is empty

isFull();: check to see if queue is Full

enqueue(el):Insert the element at the last of the element

dequeuer()remiove the element from the beginning of the queue

firstEL():

Methods of function to enqueue an element on a queue.

Voi d enqueue(i nt queue[] , i nt rear , i nt dat a, i nt s i zes)
{
 i f (i s Ful l ())
 {
 Sys t em. out . pri nt l n(“Overf l ow”) ;
 }

El s e
{

 rear++;
 queue[rear] =dat a;
 s i ze++;
}

 }

Methods of function to dequeue an element on a queue.

Voi d dequeue(i nt queue[] , i nt f ront , i nt dat a, i nt s i zes)
{
 i f (i s Empt y())
 {
 Sys t em. out . pri nt l n(“Underf l ow”) ;
 }

El s e
{

 f ront ++;
dat a=queue[f ront] ;

 s i ze- - ;
}

 }

C hapter-1 C om plexity A nalysis

Data structure and algorithm: Data structure is the way of string data in a computer so it can

be used efficiently.

Types of Data Structure:

1) Linear Data structure: In a linear data structure, data elements are stored in contiguous

memory locations. e.g.: Array, stack, queue.

2) Linear Data structure: In a non-linear data structure, data elements are stored in non-

contiguous memory locations. e.g.: Graph, Tree, linked list.

3) Static data structure: A static data structure is one whose size is fixed at creation. e.g.:

array

4) Dynamic data structure: A dynamic data structure is one whose size is variable at

creation. e.g.: Linked list.

Operation of structure

a) Traversalling

Unit 4. Recursion

Recursion is the ability of a function defining an object in terms of itself.

It is a process by which a function calls itself repeatedly until some condition has been satisfied.

For problems to be solved recursively two conditions must be satisfied

1) The problem must be expressed in recursive form.
2) The problem statement must include a terminating condition.

Recursive definition consists of two parts.

1) Anchor or ground case: The basic elements that are building blocks of the other elements
of the set are listed in anchor case.

2) Recursive or inductive case: In this case rules are given that allow for the construction of
new object.
e.g. calculating factorial
 n! =1, i f (n<=1) - - Ground case
 =n*(n- 1) , i f (n>1) - - Induct i ve/ Recursi ve case

Funct i on- - Fact ori al

i nt f act ori al (i nt n)
{
 i f (n<=1)
 ret urn 1;
 el se
 ret urn n*f act ori al (n- 1) ;
}

Funct i on- - Fi bonacci

Fi b(n) =n, i f n<2
 =f i b(n- 1) +f i b(n- 2) , i f n>=2

i nt f i b (i nt n)
{
 i f (n<2)
 ret urn n;

el se
 ret urn f i b(n- 1) +f i b(n- 2)

}

The product of two positive integers

The product of two positive integers a*b, where a and b are two positive integers, may be

defined recursively as a added b times.

Funct i on- -

a*b=a i f , b=1

 =a+ a*(b- 1) , b>1

i nt product (i nt a, i nt b)

{

 i f (b==1)

 ret urn a;

 e l s e

 ret urn(a+product (a, b- 1)) ;

}

The function that defines any number X to a non-negative integer power n is recursively defined

as

Funct i on- -

Xn =1, i f , n=0

 = X*Xn-1 , n>0

i nt power (i nt x, i nt n)

{

 i f (n==0)

 ret urn 1;

 e l s e

 ret urn(x*power(x, n- 1)) ;

}

Method calls and recursion implementation

What information should be preserved when a method is called.

Activation record

An activation record is a data area containing all local variables, the values of the methods

parameters and the return address indicating where to restart its caller.

The activation record is allocated on runtime stack.

The activation record usually contains following information.

 Values for all the parameters to the method.

 The return address to resume, control by the caller.

 The dynamic link which is a pointer to the callers’ activation record.

 The returned value for a method.

Contents of the runtime stack when main () calls method f1(),

 f1() calls method f2() and f2() calls method f3()

Activation record of f3()

Chapter 5. Binary Tree

 The value of left child of a node is less than the value of that node.

 The value of right child of a node is greater than the value of that node.

Implementing a Binary Tree

1) Array Implementation

Root: i=0

Left child=2i+1

Right child=2i+2

Since, there exists the wastage of memory space while implementing a binary tree

with an array, So we implement the binary tree from Linked List structure.

 The array implementation of binary tree consumes approximately 2H memory space

where H is height of that binary tree

2) Linked list Implementation

Defining a node

c l as s node

{

i nt dat a;

node l ef t , r i ght ;

publ i c node()

{

 dat a=0;

 l e f t =nul l ;

r i ght =nul l ;

}

publ i c node(i nt e l)

{

 dat a=el ;

l e f t =nul l ;

r i ght =nul l ;

}

}

3) Method for searching a binary search tree

Node BST(i nt e l)

{

 Node p=r oot ;

 whi l e(p. e l ! =el)

 {

 i f (e l <p. e l)

 p=p. l ef t ;

 e l s e

 p=p. r i ght ;

 i f (p==nul l)

 r e t ur n nul l ;

 }

 r e t ur n p;

}

Tree traversal

Tree traversal is the process of visiting each node of a tree exactly once.

For a binary tree of n Nodes there exists n! factorial traversal.

Types of Tree traversal

1) Breadth first traversal (BFT)

It is visiting each node from the highest (or lowest) level and moving down (or up) level

by level, visiting nodes on each level from left to right (or from right to left).

In BFT it is not possible to visit a node at level n+1 before visiting all the nodes of level n

Method

voi d BFT()

{

 Node p=r oot ;

 Queue queue=new Queue<node>() ;

 i f (p! =nul l)

 {

 queue . enqueue(p) ;

 whi l e(! queue . i s Empt y())

 {

 p=queue. dequeue() ;

 visit(p);

 if(p.left!=null)

 queue.enqueue(p.left);

 if(p.right!=null)

 queue.enqueue(p.right);

 }

 }

}

2) D epth first traversal (D FT)

Three types of depth first traversal:

a. Preorder Traversal (V LR)

To traverse a non-em pty binary tree in pre order, w e perform three activities

i. V isit the root node

ii. Traverse the left subtree in preorder

iii. Traverse the right subtree in preorder

M ethod

void preorder(Node p)

{

 visit(p);

 preoder(p.leftchild);

 preoder(p.rightchild);

}

b. In order Traversal (LV R)

To traverse a non-em pty binary tree in in order, w e perform three activities

i. Traverse the left subtree in in order

ii. V isit the root node

iii. Traverse the right subtree in in order

M ethod

void inorder(Node p)

{

 inorder(p.leftchild);

 visit(p);

 inoder(p.rightchild);

}

c. Post Traversal (LRV)

To traverse a non-em pty binary tree in post order, w e perform three activities

i. Traverse the left subtree in post order

ii. Traverse the right subtree in post order

iii. Visit the root node

Method

voi d pos t or der (Node p)

{

 pos t or der (p. l e f t chi l d) ;

 pos t oder (p. r i ght chi l d) ;

 vi s i t (p) ;

}

Algor ithm for inser ting a node in a binary tree

i f r oot i s nul l

 c r ea t e r oot node;

 r e t ur n;

i f r oot exi s t s

 compar e t he da t a wi t h node . dat a

 whi l e unt i l t he i ns er t i on pos i t i on i s l oca t ed

 i f da t a i s gr ea t er t han node . dat a

 got o r i ght s ubt r ee ;

 e l s e

 got o l e f t s ubt r ee ;

 end whi l e

 i ns er t da t a ;

end i f

Function to inser t a node in a binary tree

voi d i ns er t (i nt e l)
{
 Node p=r oot , pr ev=nul l ;
 whi l e(p! =nul l)
 {
 pr ev=p;
 i f (e l <p. e l)
 p=p. l e f t ;
 e l s e
 p=p. r i ght ;
 }

 i f (r oot ==nul l)
 r oot =new Node(e l) ;
 e l s e i f (e l <pr ev. e l)
 pr ev. l e f t =new Node(e l) ;
 e l s e
 pr ev. r i ght =new Node(e l) ;
}

There are three different ways to delete a node from a binary tree

1 Delete a leaf / terminal node

2 Delete a node with one child

3 Delete a node with two children

Two approaches of deleting a node with two children

a. Deletion by merging

b. Deletion by copying

Balancing a tree

Two arguments that support the trees are follows:

1 Tree is used to represent hierarchical structure of a certain domain and sub process is

search is much faster using tree than using linked list.

2 If Tree is not balanced, it is more or less similar to the linked list.

Height Balanced Tree or Balanced Tree

A binary tree is a height balanced tree or balanced tree if the difference in height of both subtrees

of any node in the tree is either 0 or 1;

Balancing a binary tree using binary search technique

voi d ba l ance(i nt a r r [] , i nt f i r s t , i nt l as t)
{
 i f (f i r s t <=l as t)
 {
 i nt mi d=(f i r s t +l as t) / 2;
 i ns er t (ar r [mi d]) ;
 ba l ance(ar r , f i r s t , mi d- 1) ;
 ba l ance(ar r , mi d+1, l as t) ;
 }
}

DSW Algorithm

 To avoid sorting procedure while balancing a binary tree, we use DSW algorithm.

 The building block, for tree transformation of this algorithm is rotation.

 There are two rotation: right rotation and left rotation, which are symmetrical to each

other.

 After rotating a tree, the tree is transformed into a backbone.

 Then the backbone is finally transformed into a balanced tree.

Backbone

The DSW algorithm transforms an arbitrary binary search tree into a linked list like structure,

called backbone.

Algorithm for right rotation

The right rotation of the node Ch about its parent Par is performed as follows:

Ri ght _rot at i on(Gr, Par, Ch)

I f Par i s not t he root of t he t ree

 Grandparent Gr of chi l d Ch becomes Ch’ s parent ;

 Ri ght s ubt ree of Ch becomes l ef t s ubt ree of Ch’ s parent Par;

 Node Ch acqui res Par as i t s r i ght chi l d;

Creating a backbone

creat e_backbone (root)

Tmp=root ;

Whi l e(t mp! =nul l)

 I f (t mp has a l e f t chi l d)

 Rot at e t hi s about t he t mp;

 Set t mp t o t he chi l d t hat j us t become parent ;

 e l s e

 Set t mp t o i t s r i ght chi l d

Now the above backbone is transformed into a tree but this time a balanced tree as follows:

 In each pass down the backbone, every second node down to a certain point is rotated

about its parent.

 c r ea t ePer f ec t Tr ee(n)

 m=2 Log(n+1) - 1;

 make n- m r ot a t i on s t ar t i ng f r om t op of t he backbone;

 whi l e(m>1)

 m=m/ 2;

 make m r ot a t i on s t ar t i ng f r om t op of t he backbone;

AVL Tree (Admissible Tree)

(Adelson, Velskii, Landies)

 It is a tree in which the highest of left and right subtrees of every node differ by atmost

one.

 The technique for balancing AVL trees do not guarantee that the resulting tree is

perfectly balanced.

 The numbers in the nodes indicates the balanced factor of the node.

 A balanced factor is a difference between a height of right subtree and left tree of a node.

 Balanced factor=Height of right subtree-Height of left subtree

 For an AVL tree, all balanced factors should be -1, 0 or +1

 If the balanced factor of any node in the AVL tree becomes less than -1 or greater than

+1, the tree has to be balanced.

 The minimum number of nodes in an AVL tree of height H is determine by the following

recurrence relation.

Balancing a tree after inserting a node in the right subtree of Node Q

Self-Adjusting Tree

Moving a node up in the hierarchy which is accessed frequently

Self re-structuring tree

Two possibilities of self re-structing trees are

1. Single rotation: Rotate a child about its parent when the element in a child is accessed,

unless it is in the root.

2. Moving to the root: Repeat child parent rotation until the element being accessed is in the

root.

3.

Splaying

Splaying is the modification of moving to root which applies single rotation in pairs in an order

depending on the links between the child, parent & grandparents.

Three cases (where p=grandparent, Q=parent and R=child) are as follows

Case 1: Node R’s parent is the root

Case 2: Homogeneous configuration

Node R is the left child of its parent Q and Q us also the left child of its parent P or R and

Q are both right children

Case 3: Heterogeneous configuration

Node R is the right child of its parent Q and Q is the left child of its parent P or R is the

left child of Q and Q is the right child of P.

Algorithm

spl ayi ng(p, q, r)

whi l e R i s not the Root

 i f R' s parent i s t he root

 perform si ngul ar spl ay, rotat e R about i t s parent ;

 i f R i s i n homogenous conf i gurat i on wi th i t s predeccesor

 perform a homogeneous spl ay, f i rst rotat e Q about P and then R about Q;

 el se

 perform a heterogeneous spl ay, f i rst rot ate R about Q and then R about P;

Heap:

Heap is a particular type of binary tree which has following two properties:

1. The value of each node is greater than or equal to the values stored on each of its children

2. The tree is perfectly balanced and the leaves in the last level are all in the left most

position

Min Heap

If the greater than > sign of 1st property of the max heap is changed to < sign then it is called min

heap

1. The value of each node is greater than or equal to the values stored on each of its children

2. The tree is perfectly balanced and the leaves in the last level are all in the left most

position

Heap as Priority Queue

Algorithm for enqueuing

Heapenqueue(el)x

 put el at the end of heap;

 whi l e el i s not i n the root and el >parent (el)

 swap el wi th i t s parents;

Algorithm for dequeuing

Heapdequeue(el)

 Extract the el ement f rom the root /

 Put the el ement f rom t he l ast l eaf i n i t s pl ace

 Remove the l ast l eaf ;

 P=root ;

 whi l e p i s not a l eaf and p< any of i t s chi l dren swap p wi th i t s l arger chi l d

 swap el wi th i t s parents;

Organizing Array as Heap Tree:

All the heaps are array but all the array is not heaps. So, we have to convert an array into a heap

tree.

Two approaches of converting an array into a heap tree are :

1. Top down method

2. Bottom up method (Floyd Algorithm)

Top Down method

It Starts with an empty heap and sequentially include elements in a growing heap.

It extends the heap by enqueuing new element in the heap

Bottom up method (Floyd Algorithm)

It is a multiple small heap are formed and repeatedly merged into larger heaps.

Algorithm:

 FLyodAl gori t hm(i nt dat a[])

 for i = i ndex of the l ast non- l eaf down t o 0

restore heap property for the t ree whose root i s data[i] by cal l i ng
moveDown (data, i , n-1) ;

Example:

Data[]={2, 8, 6, 1, 10, 15, 3, 12, 11}

N=si ze of array=9

