
Searching operation scans an existing list to learn whether a number is in it. We implement this 

operation with the Boolean method isInList(). 

-The method uses a temporary variable tmp. 

-List starting from the head node 

-The number stored in each is compared to the number being sought. 

-Otherwise, tmp is updated to tmp.next. 

-After reaching the last node and executing tmp=tmp.next, tmp becomes null which indicates 

number is not in the list 

- If tmp is not null number is found and isInList() is returns true, Otherwise isInList() returns 

false. 

 

Defining a node class of a singly linked list: - 

c l as s  Node  
{ 
 i nt  da t a ;  
 Node next ;  
 Node( i nt  da t a)  
 { 
  t hi s . da t a=dat a ;  
  next =nul l ;  
 } 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Doubly Linked List 

A doubly link list is a data structure in which every node in the list has two reference field. 

1. One to the successor. 
2. Another to the predecessor 

A doubly linked list can be traversed in both direction 

 

Function to add a node at the beginning of DLL:- 

voi d add_f i rst  
{ 
 Node newnode=new Node( 10) ;  
 newnode. next =head;  
 head. previ ous=newnode;  
 head=newnode;  
} 
 

Funciton to add node at the end of DLL:- 

voi d add_f i rst  
{ 
 Node newnode=new Node( 10) ;  
 Node t mp=t ai l ;  
 newnode. next =nul l ;  
 newnode. previ ous=t mp;  
 t mp. next =newnode;  
 t ai l =newnode;  

} 

Function to add node at any point in DLL 

cl ass addi ngat anyposi t i on 
{ 
 Node newnode=new Node( 100) ;  
 Node current =nul l ;  
 i f ( current ==t ai l )  
 { 
  newnode next =nul l ;  
  t ai l =newnode;  
 
 } 
 el se 
 { 
  current . next =newnode. next ;  
  current . next . previ ous=newnode. next ;  
 } 
 current . next =newnode;  
 newnode. previ ous=current ;  
} 
 



Funciton to delete 1st node of DLL 

 
c l as s  de l e t e i ngf r om1s t  
{ 
 i f ( i s Empt y( ) )  
 { 
  r e t ur n 0;  
 } 
 i f ( head==t a i l )  
 { 
  head=t a i l =nul l ;  
 } 
 e l s e  
 { 
  head=head. next ;  
  head. pr evi ous =nul l ;  
 } 
 
 
} 

Funciton to delete Last node of DLL 

 

c l as s  de l e t e i ngf r omLas t  
{ 
 i f ( i s Empt y( ) )  
 { 
  r e t ur n 0;  
 } 
 i f ( head==t a i l )  
 { 
  head=t a i l =nul l ;  
 } 
 e l s e  
 { 
  t a i l =t a i l . pr evi ous ;  
  t a i l . next =nul l ;  
 } 
 
 
} 
 

Funciton to delete  node after any position of DLL 

 

 
 
 
 
 
 



Circular Linked List 

A circular linked list is a  data structure in which every node has a successor. 

Circular linked list is used where we need nodes to form a ring. 

Types of circular linked list:- 

1. Circular singly linked list 
2. Circular doubly linked list 

 

 

 
 
 

 

Function to add a node at beginning of CSLL 

cl ass i nsert _at _f ront ( )  
{ 
 Node newnode=new Node( 2) ;  
 i f ( i sEmpt y( ) )  
 { 
  head=t ai l =newnode;  
 } 
 el se 
 { 
  newnode. next =head;  
  t ai l . next =newnode;  
  head=newnode;  
 } 
} 
 
 

Function to add a node at last of CSLL 

cl ass i nsert _at _l ast ( )  
{ 
 Node newnode=new Node( 5) ;  
 i f ( i sEmpt y( ) )  
 { 
  head=t ai l =newnode;  
 } 
 el se 
 { 
  t ai l . next =newnode;  
  newnode. next =head;  
  t ai l =newnode;  
 } 
} 



Function to delete first node of CSLL 

c l as s  de l e t e_f i r s t ( )  
{ 
 i f ( head==t a i l )  
  head=t a i l =nul l ;  
 e l s e  
 { 
  head=head. next ;  
  t a i l . next =head;  

} 
} 
 

Function to delete first node of CSLL 

c l as s  de l e t e_l as t ( )  
{ 
 i f ( head==t a i l )  
  head=t a i l =nul l ;  
 e l s e  
 { 
  Node t mp=head;  
  Whi l e( t mp. next ! =t a i l )  
  { 
   t mp=t mp. next ;  

} 
t a i l =t mp;  
t a i l . next =head;  

} 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Circular doubly linked list 

 

Function to add a node at beginning of CDLL 

cl ass i nsert at f i rst  
{ 
 Node newnode=new Node( 6) ;  
 i f ( i sEmpt y( ) )  
 { 
  head=t ai l =newnode;  
 } 
 el se 
 { 
  newnode. next =head;  
  head. previ ous=newnode;  
  newnode. previ ous=t ai l ;  
  t ai l . next =newnode;  
  head=newnode;  
 } 
} 
 
 

Function to add a node at last of CDLL 

 
 
cl ass i nsert at l ast  
{ 
 Node newnode=new Node( 6) ;  
 i f ( i sEmpt y( ) )  
 { 
  head=t ai l =newnode;  
 } 
 el se 
 { 
  newnode. next =head;  
  head. previ ous=newnode;  
  newnode. previ ous=t ai l ;  
  t ai l . next =newnode;  
  t ai l =newnode;  
 } 
} 

 

 

 

 

 

 



Function to delete a node at begining of CDLL 

 

c l as s  de l e t ef r om1s t  
{ 
 i f ( i s Empt y( ) )  
 { 
  r e t ur n 0;  
 } 
 i f ( head=t a i l )  
 { 
  head=t a i l =nul l ;  
 } 
 e l s e  
 { 
  head=head. next ;  
  head. pr evi ous =t a i l ;  
  t a i l . next =head;  
 } 
} 
 

Sk ip  L ist  

A skip list is a variant of ordered linked list that makes a non-sequential search possible. 

 

 

Self or ga n izin g list  

 A list can be organized by organized following four ways 

1. Move to Front method. 

After the desired element is located, put it at the beginning of the list. 

2. Transpose Method 

After the desired element is located, swap it with its predecessor unless it is at the head of 

the list. 

3. Count Method 

 

4. Ordering Method 

Order the list using certain criteria.  

 

 



Unit 3: Stack & Queue 

 Stack is a linear data structure that can be accessed only at one of its ends for storing and 
retrieving data. 

Stack is a LIFO structure, 

E.g.: - piles of trays in cafeteria. 

 

Operations of stack 

1. clear(): clears the stack. 
2. isEmpty(): check to see if stack is empty. 
3. isFull(): check to see if stack is Full. 
4. push(el): put an element el at the top of stack. 
5. pop(): take the topmost element of a stack. 
6. topEl(): return the topmost element without removing it. 

 

Push operation 

=> if stack is full, print overflow 

Algorithm: 

1. If stack is full, print overflow 
2. set top= top+1, 
3. stack[top]=item, 
4. return 

Function/method: 

Voi d push( i nt  st ack[ ] , i nt  t op, i nt  i t em, i nt  si zes)  
{ 
 i f ( t op==si ze- 1)  
 { 
  Syst em. out . pri nt l n( “St ack overf l ow”) ;  
 } 

el se 
 { 
  t op=t op+1;  
  st ack[ t op] =i t em;  
 } 
} 

 

 

 



Pop operation 

=> if stack is empty, print underflow 

Algorithm: 

1. If stack is empty, print underflow 

2. Item=stack[top]; 

3. top=top-1; 

4. return 

Function/method: 

Voi d pop( i nt  s t ack[ ] , i nt  t op, i nt  i t em, i nt  s i zes )  
{  
 i f ( t op==- 1)  
 {  
  Sys t em. out . pri nt l n( “St ack underf l ow”) ;  
 }  

e l s e  
 {  
  i t em=s t ack[ t op] ;  
  t op=t op- 1;  
 }  
}  

 

Application of stack 

1. Delimiter matching 

Algorithm: 

1. Delimeter_matching(file) 

2. while not end of file 

3. if ch is ‘(‘,‘[‘, or ‘{‘ 

4. push(ch); 

5. else if ch is ‘/’ 

6. read next character 

7. if this character is ‘*’ 

8. skip all characters until ‘*/’ is found and report an error if the end of file is reached before 

‘*/’ is encountered; 

9. else ch=the character read in ; 

10. continue; 

11. else if ch is ‘)‘,‘]‘, or ‘}‘ 

12. if ch and poped of  delimeter do not match; 

13. failure 

14. else 

15. read next character ch from file; 

16. if stack is empty 



17. success; 

18. else  

19. failure; 

 

 

2. Adding two large numbers 

 

Algorithm: 

1. Adding large numbers () 

2. Read the numerical of the first number and store the numbers corresponding to them on 

one stack; 

3. Read the numerical of the second number and store the numbers corresponding to them 

on another stack 

4. Result=0; 

5. While at least one stack is not empty 

6. Pop a number from each non-empty stack and add them to result; 

7. Push the unit part on the result stack; 

8. Store carry in result; 

9. Push carry on the result stack if it is not zero  

10. Pop numbers from the result stack and display them; 

 

Q u eu e 

 

 Queue is a linear data structure where operations of insertion and removal are performed 

at separate ends known as rear and front. 

 It is a first in first out structure 

 Whenever is new element is added to the queue, rear pointer is used. 

 During insertion operation rear is increment by 1. And data is stored in the queue at that 

location indicated by rear. 

 The front pointer is used to remove an element from the queue 

 The process of inserting and element at the last of the queue is called enqueue. 

 The process of removing the first element of a queue is called dequeuer. 

 

 

 

 

 



Operations of queue 

Clear(); clear the queue 

isEmpty(): check to see if queue is empty 

isFull();: check to see if queue is Full 

enqueue(el):Insert the element at the last of the element 

dequeuer()remiove the element from the beginning of the queue 

firstEL(): 

 

Methods of function to enqueue an element on a queue. 

Voi d enqueue( i nt  queue[ ] , i nt  rear , i nt  dat a, i nt  s i zes )  
{  
 i f ( i s Ful l ( ) )  
 {  
  Sys t em. out . pri nt l n( “Overf l ow”) ;  
 }  

El s e  
{  

  rear++;  
 queue[ rear] =dat a;  
 s i ze++;  
}  

 }  

 

Methods of function to dequeue an element on a queue. 

Voi d dequeue( i nt  queue[ ] , i nt  f ront , i nt  dat a, i nt  s i zes )  
{  
 i f ( i s Empt y( ) )  
 {  
  Sys t em. out . pri nt l n( “Underf l ow”) ;  
 }  

El s e  
{  

  f ront ++;  
dat a=queue[ f ront ] ;  

 s i ze- - ;  
}  

 }  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

C hapter-1 C om plexity A nalysis 

 

Data structure and algorithm: Data structure is the way of string data in a computer so it can 

be used efficiently. 

Types of Data Structure: 

1) Linear Data structure: In a linear data structure, data elements are stored in contiguous 

memory locations. e.g.: Array, stack, queue. 

2) Linear Data structure: In a non-linear data structure, data elements are stored in non-

contiguous memory locations. e.g.: Graph, Tree, linked list. 

3) Static data structure: A static data structure is one whose size is fixed at creation. e.g.: 

array 

4) Dynamic data structure: A dynamic data structure is one whose size is variable at 

creation. e.g.: Linked list. 

Operation of structure 

a) Traversalling 

 

  



Unit 4. Recursion 

Recursion is the ability of a function defining an object in terms of itself. 

It is a process by which a function calls itself repeatedly until some condition has been satisfied. 

For problems to be solved recursively two conditions must be satisfied 

1) The problem must be expressed in recursive form. 
2) The problem statement must include a terminating condition. 

Recursive definition consists of two parts. 

1) Anchor or ground case: The basic elements that are building blocks of the other elements 
of the set are listed in anchor case. 

2) Recursive or inductive case: In this case rules are given that allow for the construction of 
new object. 
e.g. calculating factorial 
 n! =1,  i f ( n<=1)     - -  Ground case 
   =n*( n- 1) ,  i f ( n>1)  - - Induct i ve/ Recursi ve case 
 
Funct i on- -  Fact ori al  
  
i nt  f act ori al  ( i nt  n)  
{ 
 i f ( n<=1)  
  ret urn 1;  
 el se 
  ret urn n*f act ori al ( n- 1) ;  
} 
 
 
Funct i on- -  Fi bonacci  
 
Fi b( n) =n,  i f  n<2 
 =f i b( n- 1)  +f i b( n- 2) ,  i f  n>=2 
 
i nt  f i b ( i nt  n)  
{ 
 i f ( n<2)  
 ret urn n;  

el se 
 ret urn f i b( n- 1)  +f i b( n- 2)  

} 
 
 



The product of two positive integers 

The product of two positive integers a*b, where a and b are two positive integers, may be 

defined recursively as a added b times. 

Funct i on- -   

 

a*b=a  i f ,  b=1 

   =a+ a*( b- 1)  , b>1 

 

i nt  product  ( i nt  a,  i nt  b)  

{  

 i f ( b==1)  

  ret urn a;  

 e l s e  

  ret urn( a+product ( a, b- 1) ) ;  

}  

 

The function that defines any number X to a non-negative integer power n  is recursively defined 

as  

Funct i on- -   

 

Xn =1,  i f ,  n=0 

   = X*Xn-1 , n>0 

 

i nt  power ( i nt  x,  i nt  n)  

{  

 i f ( n==0)  

  ret urn 1;  

 e l s e  

  ret urn( x*power( x, n- 1) ) ;  

}  

 

Method calls and recursion implementation 

What information should be preserved when a method is called. 

 

 

 

 



Activation record  

An activation record is a data area containing all local variables, the values of the methods 

parameters and the return address indicating where to restart its caller. 

The activation record is allocated on runtime stack. 

The activation record usually contains following information. 

 Values for all the parameters to the method. 

 The return address to resume, control by the caller. 

 The dynamic link which is a pointer to the callers’ activation record. 

 The returned value for a method. 

 

Contents of the runtime stack when main () calls method f1(), 

 f1() calls method f2() and f2() calls method f3() 

 

Activation record of f3() 



Chapter 5. Binary Tree 

 The value of left child of a node is less than the value of that node. 

 The value of right child of a node is greater than the value of that node. 

 

Implementing a Binary Tree 

1) Array Implementation 

Root: i=0 

Left child=2i+1 

Right child=2i+2 

 

Since, there exists the wastage of memory space while implementing a binary tree 

with an array, So  we implement the binary tree from Linked List structure. 

 The array implementation of binary tree consumes approximately 2H memory space 

where H is height of that binary tree  

 

2) Linked list Implementation 

Defining a node 

 

c l as s  node 

{  

i nt  dat a;  

node l ef t ,  r i ght ;  

publ i c  node( )  

{  

 dat a=0;  

 l e f t =nul l ;  

r i ght =nul l ;  

}  

 

publ i c  node( i nt  e l )  

{  

 dat a=el ;  

l e f t =nul l ;  

r i ght =nul l ;  

}  

}  

 

 

 



3) Method for searching a binary search tree 

 

Node BST( i nt  e l )  

{ 

 Node p=r oot ;  

 whi l e( p. e l ! =el )  

 { 

  i f ( e l <p. e l )  

   p=p. l ef t ;  

  e l s e  

   p=p. r i ght ;  

  i f ( p==nul l )  

   r e t ur n nul l ;  

 } 

 r e t ur n p;  

} 

 

 

Tree traversal 

Tree traversal is the process of visiting each node of a tree exactly once. 

For a binary tree of n Nodes there exists n! factorial traversal. 

Types of Tree traversal 

1) Breadth first traversal (BFT) 

It is visiting each node from the highest (or lowest) level and moving down (or up) level 

by level, visiting nodes on each level from left to right (or from right to left). 

 

In BFT it is not possible to visit a node at level n+1 before visiting all the nodes of level n  

Method 

voi d BFT( )  

{ 

 Node p=r oot ;  

 Queue queue=new Queue<node>( ) ;  

 i f ( p! =nul l )  

 { 

  queue . enqueue( p) ;  

  whi l e( ! queue . i s Empt y( ) )  

  { 

   p=queue. dequeue( ) ;  



   visit(p); 

   if(p.left!=null) 

    queue.enqueue(p.left); 

   if(p.right!=null) 

    queue.enqueue(p.right); 

  } 

 } 

} 

 

2) D epth first traversal (D FT) 

Three types of depth first traversal: 

a. Preorder Traversal (V LR) 

To traverse a non-em pty binary tree in pre order, w e perform  three activities 

i. V isit the root node 

ii. Traverse the left subtree in preorder 

iii. Traverse the right subtree in preorder 

M ethod 

void preorder(Node p) 

{ 

 visit(p); 

 preoder(p.leftchild); 

 preoder(p.rightchild); 

} 

 

b. In order Traversal (LV R) 

To traverse a non-em pty binary tree in in order, w e perform  three activities 

i. Traverse the left subtree in in order 

ii. V isit the root node 

iii. Traverse the right subtree in in order 

M ethod 

void inorder(Node p) 

{ 

 inorder(p.leftchild); 

 visit(p); 

 inoder(p.rightchild); 

} 

 

 

c. Post Traversal (LRV ) 

To traverse a non-em pty binary tree in post order, w e perform  three activities 

i. Traverse the left subtree in post order 



ii. Traverse the right subtree in post order 

iii. Visit the root node 

Method 

voi d pos t or der ( Node p)  

{ 

 pos t or der ( p. l e f t chi l d) ;  

 pos t oder ( p. r i ght chi l d) ;  

 vi s i t ( p) ;  

} 

Algor ithm for  inser ting a node in a binary tree 

i f  r oot  i s  nul l  

 c r ea t e  r oot  node;  

 r e t ur n;  

i f  r oot  exi s t s  

 compar e  t he  da t a  wi t h node . dat a  

 whi l e  unt i l  t he  i ns er t i on pos i t i on i s  l oca t ed 

  i f  da t a  i s  gr ea t er  t han node . dat a  

   got o r i ght  s ubt r ee ;  

  e l s e  

   got o l e f t  s ubt r ee ;  

 end whi l e  

 i ns er t  da t a ;  

end i f  

Function to inser t a node in a binary tree 

voi d i ns er t ( i nt  e l )  
{ 
 Node p=r oot ,  pr ev=nul l ;  
 whi l e( p! =nul l )  
 { 
  pr ev=p;  
  i f ( e l <p. e l )  
   p=p. l e f t ;  
  e l s e  
   p=p. r i ght ;  
 } 
 
 i f ( r oot ==nul l )  
  r oot =new Node( e l ) ;  
 e l s e  i f ( e l <pr ev. e l )  
  pr ev. l e f t =new Node( e l ) ;  
 e l s e  
  pr ev. r i ght =new Node( e l ) ;  
} 
 



There are three different ways to delete a node from a binary tree 

1 Delete a leaf / terminal node 

2 Delete a node with one child 

3 Delete a node with two children 

Two approaches of deleting a node with two children 

a. Deletion by merging 

b. Deletion by copying 

 

 

 

Balancing a tree 

Two arguments that support the trees are follows: 

1 Tree is used to represent hierarchical structure of a certain domain and sub process is 

search is much faster using tree than using linked list. 

2 If Tree is not balanced, it is more or less similar to the linked list. 

 

Height Balanced Tree or  Balanced Tree 

A binary tree is a height balanced tree or balanced tree if the difference in height of both subtrees 

of any node in the tree is either 0 or 1; 

 

Balancing a binary tree using binary search technique 

voi d ba l ance( i nt  a r r [ ] , i nt  f i r s t , i nt  l as t )  
{ 
 i f ( f i r s t <=l as t )  
 { 
  i nt  mi d=( f i r s t +l as t ) / 2;  
  i ns er t ( ar r [ mi d] ) ;  
  ba l ance( ar r , f i r s t , mi d- 1) ;  
  ba l ance( ar r , mi d+1, l as t ) ;  
 } 
} 

 

 

 

 



DSW Algorithm 

 To avoid sorting procedure while balancing a binary tree, we use DSW algorithm. 

 The building block, for tree transformation of this algorithm is rotation. 

 There are two rotation: right rotation and left rotation, which are symmetrical to each 

other. 

 After rotating a tree, the tree is transformed into a backbone. 

 Then the backbone is finally transformed into a balanced tree. 

  

Backbone 

The DSW algorithm transforms an arbitrary binary search tree into  a linked list like structure, 

called backbone. 

 

Algorithm for right rotation 

The right rotation of the node Ch about its parent Par is performed as follows: 

Ri ght _rot at i on( Gr, Par, Ch)  

I f  Par  i s  not  t he  root  of  t he  t ree  

 Grandparent  Gr  of  chi l d Ch becomes  Ch’ s  parent ;  

 Ri ght  s ubt ree  of  Ch becomes  l ef t  s ubt ree  of  Ch’ s  parent  Par;  

 Node Ch acqui res  Par as  i t s  r i ght  chi l d;  

 

Creating a backbone 

creat e_backbone ( root )  

Tmp=root ;  

Whi l e( t mp! =nul l )  

 I f ( t mp has  a l e f t  chi l d)  

  Rot at e  t hi s  about  t he  t mp;  

  Set  t mp t o t he  chi l d t hat  j us t  become parent ;  

 e l s e  

  Set  t mp t o i t s  r i ght  chi l d 

 

 

 

 



Now the above backbone is transformed into a tree but this time a balanced tree as follows: 

 In each pass down the backbone, every second node down to a certain point is rotated 

about its parent. 

 c r ea t ePer f ec t Tr ee( n)  

 m=2 Log( n+1)  - 1;  

 make n- m r ot a t i on s t ar t i ng f r om t op of  t he  backbone;  

 whi l e( m>1)  

 m=m/ 2;  

 make m r ot a t i on s t ar t i ng f r om t op of  t he  backbone;  

 

 

 

 

 

 

 

AVL Tree (Admissible Tree) 

(Adelson, Velskii, Landies) 

 It is a tree in which the highest of left and right subtrees of every node  differ by atmost 

one. 

 The technique for balancing AVL trees do not guarantee that the resulting tree is 

perfectly balanced. 

 The numbers in the nodes indicates the balanced factor of the node. 

 A balanced factor is a difference between a height of right subtree and left tree of a node. 

 Balanced factor=Height of right subtree-Height of left subtree 

 For an AVL tree, all balanced factors should be -1, 0 or +1 

 If the balanced factor of any node in the AVL tree becomes less than -1 or greater than 

+1, the tree has to be balanced. 

 The minimum number of nodes in an AVL tree of height H is determine by the following 

recurrence relation. 

 

Balancing a tree after inserting a node in the right subtree of Node Q 

 

 

 



Self-Adjusting Tree 

Moving a node up in the hierarchy which is accessed frequently 

 

Self re-structuring tree 

Two possibilities of self re-structing trees are  

1. Single rotation: Rotate a child about its parent when the element in a child is accessed, 

unless it is in the root. 

2. Moving to the root: Repeat child parent rotation until the element being accessed is in the 

root. 

3.  

 

Splaying  

Splaying is the modification of moving to root which applies single rotation in pairs in an order 

depending on the links between the child, parent & grandparents. 

 

Three cases (where p=grandparent, Q=parent and R=child) are as follows 

Case 1: Node R’s parent is the root 

Case 2: Homogeneous configuration 

Node R is the left child of its parent Q and Q us also the left child of its parent P or R and 

Q are both right children 

 

Case 3: Heterogeneous configuration 

Node R is the right child of its parent Q and Q is the left child of its parent P or R is the 

left child of Q and Q is the right child of P. 

Algorithm 

spl ayi ng(p, q, r)  

whi l e R i s not  the Root  

 i f  R' s parent  i s t he root  

  perform si ngul ar spl ay,  rotat e R about  i t s parent  ;  

 i f  R i s i n homogenous conf i gurat i on wi th i t s predeccesor 

  perform a homogeneous spl ay,  f i rst  rotat e Q about  P and then R about  Q;  

 el se 

  perform a heterogeneous spl ay,  f i rst  rot ate R about  Q and then R about  P;  



Heap: 

Heap is a particular type of binary tree which has following two properties: 

1. The value of each node is greater than or equal to the values stored on each of its children 

2. The tree is perfectly balanced and the leaves in the last level are all in the left most 

position  

 

 

Min Heap 

If the greater than > sign of 1st property of the max heap is changed to < sign then it is called min 

heap 

1. The value of each node is greater than or equal to the values stored on each of its children 

2. The tree is perfectly balanced and the leaves in the last level are all in the left most 

position  

 

Heap as Priority Queue 

Algorithm for enqueuing 

Heapenqueue( el )x 

 put  el  at  the end of  heap;  

 whi l e el  i s not  i n the root  and el >parent (el )  

  swap el  wi th i t s parents;  

 

Algorithm for dequeuing 

Heapdequeue( el )  

 Extract  the el ement  f rom the root /  

 Put  the el ement  f rom t he l ast  l eaf  i n i t s pl ace 

 Remove the l ast  l eaf ;  

 P=root ;  

 whi l e p i s not  a l eaf  and p< any of  i t s chi l dren swap p wi th i t s l arger chi l d 

 swap el  wi th i t s parents;  

 

 

 

 



Organizing Array as Heap Tree: 

All the heaps are array but all the array is not heaps. So, we have to convert an array into a heap 

tree. 

Two approaches of converting an array into a heap tree are : 

1. Top down method 

2. Bottom up method (Floyd Algorithm) 

 

 

 

Top Down method 

It Starts with an empty heap and sequentially include elements in a growing heap. 

It extends the heap by enqueuing new element in the heap 

                                                   

 

 

Bottom up method (Floyd Algorithm) 

It is a multiple small heap are formed and repeatedly merged into larger heaps. 

Algorithm: 

 FLyodAl gori t hm( i nt  dat a[ ] )  

 for i = i ndex of  the l ast  non- l eaf  down t o 0 

restore heap property for the t ree whose root  i s data[ i ]  by cal l i ng 
moveDown (data, i , n-1) ;  

Example: 

Data[ ]={2, 8, 6, 1, 10, 15, 3, 12, 11} 

N=si ze of  array=9 

 

 

 

 

 


