
1	
	

Unit	7:	Graphs	
	

Ø A	simple	graph,	denoted	by	G	=	(V,	E),	is	composed	of	a	finite	set	of	vertices	and	a	finite	set	
of	edges.		

Ø The	elements	of	V	are	 the	vertices	and	 those	of	E	are	 the	edges.	The	vertex	 set	of	V	are	
denoted	by	VG	and	edge	set	is	denoted	by	EG.	Thus	G	=	(VG,	EG).		

Ø The	number	of	vertices	is	denoted	by	|V|	and	number	of	edges	is	denoted	by	|E|.	
	
v A	directed	graph	or	digraph	G	=	(V,	E)	consists	of	a	nonempty	set	V	of	vertices	and	a	set	of	

edges	where	each	edge	is	a	pair	of	vertices	from	V.		
v The	difference	is	that	one	edge	of	a	simple	graph	is	of	the	form	{vi,vj}	and	for	such	an	edge	

{vi,vj}	=	{vj,vi}.		
v In	digraph,	the	edge	is	of	the	form	(vi,vj)	and	in	this	case,	(vi,vj)	≠	(vj,vi).	Unless	necessary,	this	

distinction	 in	 notation	will	 be	 disregarded	 and	 edge	 between	 vertices	 vi	 and	 vj	 is	 will	 be	
referred	to	as	edge	(vi,vj).	

	
Ø A	multigraph	is	a	graph	in	which	two	vertices	can	be	joined	by	multiple	edges.		 	
Ø A	path	from	vi	to	vj	is	a	sequence	of	edges	edge	(v1,	v2),	edge(v2,v3),….(vn-1,vn)	and	is	denoted	

as	path	v1,v2,v3,……………..vn-1,vn.		
Ø If	v1	=	vn	and	no	edge	is	repeated,	then	the	path	is	called	a	circuit.		
Ø If	all	vertices	in	a	circuit	are	different,	then	it	is	called	a	cycle.	
Ø The	graph	is	called	a	weighted	graph	if	each	edge	has	an	assigned	number.	
Ø The	 number	 assigned	 to	 an	 edge	 is	 called	 its	 weight/cost/distance/length	 or	 some	 other	

name.	
Ø A	graph	with	n	vertices	is	called	complete	and	is	denoted	by	Kn	if	for	some	each	pair	of	distinct	

vertices	there	is	exactly	one	edge	connecting	them:	that	is,	each	vertex	can	be	connected	to	
any	other	vertex.		
	

	

2	
	

Graph	Representation	 	

There	are	various	ways	to	represent	a	graph.		
Ø A	simple	representation	is	given	by	an	adjacency	list	which	specifies	all	vertices	adjacent	to	

each	vertex	of	the	graph.	This	list	can	be	implemented	as	table,	in	which	case	it	is	called	a	star	
representation	which	can	be	forward	or	reverse.	

Ø Another	representation	is	a	matrix,	which	comes	in	two	forms:	an	adjacency	matrix	and	an	
incidence	matrix.		
1. An	adjacency	matrix	of	graph	g	=	(V,	E)	is	a	binary	|V|×|V|	matrix	such	that	each	entry	of	

this	matrix:	
																								aij	=			1						if	there	exists	an	edge	(vi,vj)	

	0						Otherwise.	
Generalization	of	this	definition	to	multigraph	is	obtained	by	transforming	the	definition	into	the	following	
form:	
																				aij	=	number	of	edges	between	vi	and	vj.	

2. Another	matrix	representation	of	a	graph	is	based	on	the	incidents	of	vertices	and	edges	and	is	
called	an	incidence	matrix.	An	incidence	matrix	of	graph	G	=	(V,	E)	is	a	|V|×|E|	matrix	such	that:	

																			aij				=	1			if	edge	ej	is	incident	with	vertex	vi	
																														0	otherwise				
	

																					 	
	

3	
	

Graph	Traversal	
As	 in	 the	 trees,	 traversing	a	graph	consists	of	 visiting	each	vertex	only	one	 time.	The	 simple	 traversal	
algorithms	 used	 for	 trees	 cannot	 be	 applied	 because	 graphs	may	 include	 cycles;	 hence	 tree	 traversal	
algorithms	would	 result	 in	 infinite	 loops.	 To	 prevent	 that	 from	happening,	 each	 visited	 vertex	 can	 be	
marked	to	avoid	revisiting	it.	However,	graphs	can	have	isolated	vertices,	which	means	that	some	part	of	
the	graph	are	left	out	if	unmodified	tree	traversal	methods	are	applied.	

There	are	two	types	of	traversal.	

Depth	 First	 Traversal:	 This	 algorithm	 was	 developed	 by	 John	 Hop	 croft	 and	 Robert	 Tarjan.	 In	 this	
algorithm,	each	vertex	v	is	visited	and	then	unvisited	vertex	adjacent	to	v	is	visited.	If	a	vertex	v	has	no	
adjacent	vertices	or	all	of	its	adjacent	vertices	have	been	visited,	we	backtrack	to	the	predecessor	of	v.	
The	traversal	is	finished	if	this	visiting	and	backtracking	process	leads	to	the	first	vertex	where	the	traversal	
started.	If	there	are	still	some	unvisited	vertices	in	the	graph,	the	traversal	continues	restarting	for	one	of	
the	unvisited	vertices.	

The	algorithm	assigns	a	unique	number	to	each	accessed	vertex	so	that	vertices	are	now	renumbered.	

DFS(v)	
							num(v)	=	i++;	
							for	all	vertices	u	adjacent	to	v	
												if	num(u)	is	0	
	 		attach	edge	(uv)	to	edges;	

		DFS(u);	
DepthFirstSearch	()	
for	all	vertices	v	
							num(v)	=	0;	
							edges	=	null;	
							i	=	1;	
							while	there	is	a	vertex	v	such	that	num	(v)	is	0	
												DFS(v)	
							output	edges;	
	

	

	

4	
	

Depth	First	Search	for	a	Digraph:	

	

The	complexity	of	depth	first	search	algorithm	is	O(|V|+|E|)	because	(a)	initializing	num(v)	for	each	vertex	
requires	|V|	steps.	(b)	DFS(v)	is	called	deg(v)	times	for	each	v-	that	is,	once	for	each	edge	of	v.	Hence,	the	
total	number	of	calls	is	2|E|.	(c)	searching	for	vertices	as	required	by	the	statement		

While	there	is	a	vertex	v	such	that	num	(v)	is	0	

can	be	assumed	to	require	|V|	steps.		

The	complexity	of	depthFirstSearch	()	is	O(|V|+|E|)	because	initializing	num(v)	for	each	vertex	v	requires	
|V|	steps;	

Breadth	First	Traversal(BFS):	
- breadth-first	traversal	uses	a	queue	as	the	basic	data	structure.		
- first	tries	to	mark	all	neighbors	of	a	vertex	v	before	proceeding	to	other	vertices		
- whereas	DFS()	picks	one	neighbor	of	a	v	and	then	proceeds	to	a	neighbor	of	this	neighbor	before	

processing	any	other	neighbors	of	v		
	

Pseudocode	for	Breadth	First	Traversal:	

BreadthFirstSearch()	
				for	all	vertices	u	
									num(u)	=	0;	
				edges	=	null;	
				i	=	1;	
				while(there	is	a	vertex	v	such	that	num(v)	==0	
									num(v)	=	i++;	
									enqueue	(v);	
									while	queue	is	not	empty	
														v	=	dequeue	()	
														for	all	vertices	u	adjacent	to	v	
																			if	num(u)	is	0	
																									num(u)	=	i++;	
																									enqueue(u)	
																									attach	edge(vu)	to	edges;	
						output	edges;	

5	
	

	
	
Breadth	First	Search	for	a	Digraph:	

	
	

Shortest	Paths		

Finding	the	shortest	path	is	a	classical	problem	in	graph	theory	and	a	large	number	of	different	solutions	
have	been	proposed.	Edges	are	assigned	certain	weights	representing,	for	example,	distances	between	
cities,	 times	 separating	 the	 execution	 of	 certain	 tasks,	 costs	 of	 transmitting	 information	 between	
locations.	When	determining	the	shortest	path	a	from	vertex	v	to	u,	information	about	distances	between	
intermediate	w	has	to	be	recorded.	This	 information	can	be	recorded	as	a	 label	associated	with	these	
vertices,	where	the	level	is	only	the	distance	from	v	to	w	or	the	distance	along	with	the	predecessor	of	w	
in	this	path.	The	methods	of	finding	the	shortest	path	rely	on	these	labels.	Depending	on	how	many	times	
these	labels	are	updated,	the	methods	of	solving	the	shortest	path	problem	are	divided	into	two	classes:	
label	setting	methods	and	label-correcting	methods.	

For	label	setting	methods,	in	each	pass	through	the	vertices	still	to	be	processed,	one	vertex	is	set	to	a	
value	 that	 remains	 unchanged	 to	 the	 end	 of	 the	 execution.	 This,	 however,	 limits	 such	 methods	 to	
processing	 graphs	with	 only	 positive	weights.	 The	 second	 category	 includes	 label	 correcting	methods	
which	allow	for	the	changing	of	any	 label	during	application	of	the	methods.	The	 later	method	can	be	
applied	to	graphs	negative	weights	and	with	no	negative	cycles-	a	cycle	composed	of	edges	with	weights	
adding	up	to	negative	number-	but	they	guarantee	that,	for	all	vertices,	the	current	distances	indicate	the	
shortest	 path	 only	 after	 the	 processing	 of	 the	 graph	 is	 finished.	 Most	 of	 the	 label	 setting	 and	 label	
correcting	methods,	however,	can	be	subsumed	to	the	same	form,	which	allows	finding	the	shortest	paths	
from	one	vertex	to	all	other	vertices.	

GenericShortestPathAlgorithm	(weighted	simple	diagraph,	vertex	first)	 	

							for	all	vertices	v	

														currDist(v)	=	∞;	
														currDist(first)	=	0;	

initialize	toBeChecked;	
while	toBeChecked	is	not	empty	

6	
	

v	=	a	vertex	in	toBeChecked;	
remove	v	from	toBeChecked;	
for	all	vertices	u	adjacent	to	v	
							if	curDist(u)>curDist(v)+weight(edge(vu))	

currDist(u)	=	currDist(v)+weight(edge(vu));	
predecessor(u)	=	v;	
add	u	to	toBeChecked	if	it	not	there;	

	
It	should	be	clear	that	the	organization	of	toBeChecked	can	determine	the	order	of	choosing	new	values	
for	v,	but	it	also	determines	the	efficiency	of	the	algorithm.	
What	distinguishes	label-setting	methods	from	label	correcting	methods	in	the	method	of	choosing	the	
value	for	v,	always	a	vertex	in	toBeChecked	with	the	smallest	current	distance.	One	of	the	first	label	setting	
algorithms	was	developed	by	Dijkstra.	
In	Dijkstra’s	algorithm,	a	number	of	paths	p1,p2,……..	..	pn	from	a	vertex	v	are	tried,	and	each	time,	the	
shortest	path	is	chosen	among	them,	which	may	mean	that	the	same	path	pi	can	be	continued	by	adding	
one	more	edge	to	it.	But	if	pi	turns	to	be	longer	than	any	other	path	that	can	be	tried,	pi	is	abandoned	and	
this	other	path	is	tried	by	resuming	from	where	it	was	left	and	by	adding	one	more	edge	to	it.	Because	
paths	 can	 lead	 to	vertices	with	more	 than	one	outgoing	edge,	new	paths	 for	possible	exploration	are	
added	for	each	outgoing	edge.	Each	vertex	 is	tried	once,	all	paths	 leading	from	it	are	opened,	and	the	
vertex	 itself	 is	put	away	and	not	used	anymore.	After	all	vertices	are	visited,	the	algorithm	is	 finished.	
Dijkstra’s	algorithm	is	as	follows:	
DijkatraAlgorithm	(weighted	simple	diagraph,	vertex	first)	
							For	all	vertices	v	
														CurDist	(v)	=	o	
														ToBeChecked	=	all	vertices	
														while	toBeChecked	is	not	empty	
																					v	=	a	vertex	in	toBeChecked	with	minimal	currDist(v);	

							remove	v	from	toBeChecked;	
							for	all	vertices	u	adjacent	to	v	and	in	toBeChecked	

if	currDist(u)>	currDist(v)+weight(edge(vu))	
							CurrDist	(u)	=	currDist	(v)+weight(edge(vu))	
							predecessor	(u)	=	v;	

	
Dijkstra’s	algorithm	is	obtained	from	the	generic	method	by	being	more	specific	about	which	vertex	is	to	
be	taken	from	toBeChecked	so	that	the	line	
v	=	a	vertex	toBeChecked;	
is	replaced	by	the	line	
v	=	a	vertex	in	toBeChecked	with	minimal	curDist	(v);	
	
	

7	
	

	
	 	

8	
	

	
	 	

9	
	

	
	 	

10	
	

All	to	All	Shortest	Path	Problems	
The	task	of	finding	all	shortest	paths	from	any	vertex	to	any	other	vertex	is	more	complex	than	the	task	
of	dealing	with	the	one	source	only.	But	the	method	was	designed	by	Stephen	Warshall	and	implemented	
by	Robert	W	Floyd	and	P,	Z	using	adjacency	matrix.	The	graph	can	include	negative	weights.	The	algorithm	
is	as	follows:	
WFIalgorithm	(matrix	weight)	
							for	i=1	to	|V|	

for	j=1	to	|V|	
							for	k	=	1	to	|V|	

if	weight[j][k]>	weight[j][i]+weight[i][k]	
							weight[j][k]	=	weight[j][i]+weight[i][k];	

	
The	outermost	 loop	refers	 to	vertices	that	may	be	on	a	path	between	the	vertex	with	 index	 j	and	the	
vertex	k.			

	
	

11	
	

This	algorithm	also	allows	us	to	detect	cycles	if	the	diagonal	is	initialized	to	∞ and	not	to	zero.	If	any	of	the	
diagonal	values	are	changed,	the	graph	contains	a	cycle.	Also,	if	an	initial	value	of	∞ between	two	vertices	
in	the	vertex	is	not	changed	to	a	finite	value,	it	is	an	indication	that	one	vertex	cannot	be	reached	from	
another.	
We	can	observe	that,	for	any	vertex	v,	the	length	of	the	shortest	path	to	v	is	never	greater	than	the	length	
of	the	shortest	path	to	any	of	its	predecessors	w	plus	the	length	of	edge	from	w	to	v	or	
	
dist	(v)≤dist(w)	+	weight(edge(wv))	
	
For	any	vertices	v	and	w.	This	inequality	is	equivalent	to	the	inequality]	
0≤weight’	(edge	(wv))	=	weight	(edge	(vw)+dist(w)-dist(v))	
	
Hence,	changing	weight(e)	to	weight’€	for	all	edges	e	renders	a	graph	with	nonnegative	edge	weights.	
Now	the	shortest	path	v1,	v2,	v3,……vk	is	

weight' edge vivi + 1 =	./0
123 	 weight edge vivi + 1 + dist vi − dist vk12./0

123 	

	
Therefore,	if	the	weight	L’	of	the	path	from	v1	to	vk	is	found	in	terms	of	nonnegative	weights,	then	length	
L	of	the	same	path	in	the	same	graph	using	the	original	weights,	some	possibly	negative,	is	L	=	L’-	dist(v1)	
+dist(vk).	
	
Cycle	Detection		
Ø Many	algorithms	rely	on	detecting	cycles	in	graphs.	We	have	just	seen	that	as	a	side	effect,	

WFIalgorithm	()	allows	for	detecting	cycles	in	graphs.	However,	it	is	a	cubic	algorithm,	which	in	many	
situations	is	too	inefficient.	Therefore,	other	cycles	detection	methods	have	to	be	explored.		

Ø One	such	algorithm	is	obtained	directly	from	depthFirstSearch	().		
(a) For	undirected	graphs:	

	small	modifications	in	DFS(v)	are	needed	to	detect	cycles	and	report	them.	
Ø We	do	a	DFS	traversal	of	the	given	graph.	For	every	visited	vertex	‘v’,	if	there	is	an	adjacent	‘u’	such	

that	u	is	already	visited	and	u	is	not	parent	of	v,	then	there	is	a	cycle	in	graph.	If	we	don’t	find	such	
an	adjacent	for	any	vertex,	we	say	that	there	is	no	cycle.		
	

	
	 	

CycleDetectionDFS	(v)	
						num(v)	=	i++;																																																								
							for	all	vertices	u	adjacent	to	v	

if	num(u)	is	0	
							pred(u)	=	v	
							cycleDetectionDFS	(u);	
else	if	u	≠pred(v)	
							pred(u)	=	v;	
							cycle	detected;		

	
	

12	
	

(b)	For	Directed	Graph:	
There	is	a	cycle	in	a	graph	only	if	there	is	a	back	edge	present	in	the	graph.	A	back	edge	is	an	edge	that	is	
from	a	node	to	itself	(self-loop)	or	one	of	its	ancestor	in	the	tree	produced	by	DFS.	
	
For	diagraphs,	the	situation	is	a	bit	more	complicated,	because	there	may	be	edges	between	different	
spanning	subtrees,	called	side	edges.	An	edge	(a	back	edge)	indicates	a	cycle	if	it	joins	two	vertices	already	
included	 in	 the	same	spanning	subtree.	To	consider	only	 this	case,	a	number	higher	 than	any	number	
generated	 in	 the	 subsequent	 searches	 is	 assigned	 to	 a	 vertex	 being	 currently	 visited	 after	 all	 its	
descendents	have	also	been	visited.	In	this	way,	if	a	vertex	is	about	to	be	joined	by	an	edge	with	a	vertex	
having	a	lower	number,	we	declare	a	cycle	detection.	The	algorithm	is	now	
	
DigraphCycleDetectionDFS	(v)	
							num	(v)		=	i+1;	
							for	all	vertices	u	adjacent	to	v	

if	num(u)	is	0		
							pred(u)		=	v	
							digraphCycleDetectionDFS	(u);	
else	if	num(u)	is	not	∞
							pred(u)=v	
							cycle	detected;	

							num(v)	=	∞ ;

	 	

13	
	

Union-Find	Problem:	
Ø The	task	is	to	determine	if	two	vertices	are	in	the	same	set.	
Ø Two	operations	are	performed	to	implement	this	tasks	are:	

i. Find:	finding	the	set	to	which	two	vertices	belong.	
ii. Union:	uniting	two	sets	into	one	if	these	vertices	belong	to	two	different	sets.	
	

Ø The	sets	used	to	solve	the	union-find	problem	are	implemented	with	circular	linked	lists.		
Ø Each	list	is	identified	by	a	vertex	that	is	the	root	of	the	tree	to	which	the	vertices	in	the	list	belong.	

Example:	Lists	L1	and	L2	(Figure	8.12a)	are	merged	into	one	by	interchanging	next	references	in	both	lists		

	 	

14	
	

Spanning	Trees:	Consider	the	graph	representing	the	airline’s	connections	between	seven	cities.	 If	the	
economic	situation	forces	this	airline	to	shut	down	as	many	connections	as	possible,	which	of	them	should	
be	retained	to	make	sure	that	it	is	still	possible	to	reach	any	city	from	any	other	city,	if	only	indirected?		
One	popular	algorithm	was	devised	by	Joseph	Kruskal.	In	this,	all	edges	are	ordered	by	weight,	and	then	
each	edge	in	this	ordered	sequence	is	checked	to	see	whether	it	can	be	considered	part	of	the	tree	under	
construction.	 It	 is	 added	 to	 the	 tree	 if	 no	 cycle	arises	after	 its	 inclusion.	 This	 simple	algorithm	can	be	
summarized	as	follows:	
KruskalAlgorithm(weighted	connected	undirected	graph)	
							tree	=	null;	
							edges	=	sequence	of	all	edges	of	graph	sorted	by	weight;	
							for	(i=1;	i	≤|E|	and	|tree|	<	|V|-1;	i++)	
														if	ei	from	edges	does	not	form	a	cycle	with	edges	in	tree		

							add	ei	to	tree;	
	

	
The	complexity	of	this	algorithm	is	determined	by	the	complexity	of	the	sorting	method	applied,	which	
for	an	efficient	sorting	is	O(|E|log|E|).	It	also	depends	on	the	complexity	of	the	method	used	for	cycle	
detection.	

It	is	possible	to	build	a	spanning	tree	by	using	any	order	of	edges.	A	method	was	proposed	by	Dijkstra	and	
independently	by	Robert	Kalaba.	
	
DijkstraMethod(weighted	connected	undirected	graph)	
							tree	=	null;	
							edges	=	an	unsorted	sequence	of	all	edges	of	graph;	
							for	j	=	1	to	|E|	

add	ej	to	tree;	
if	there	is	a	cycle	in	tree	
							remove	an	edge	with	maximum	weight	from	this	only	cycle;	

15	
	

	
In	this	algorithm,	the	tree	is	being	expanded	by	adding	to	it	edges	one	by	one,	and	if	a	cycle	is	detected,	
then	an	edge	in	this	cycle	with	maximum	weight	is	discarded.	

	
	
	 	

16	
	

Connectivity			
In	many	situations,	we	are	interested	in	finding	a	path	in	the	graph	from	one	vertex	to	any	other	vertex.	
For	undirected	graphs,	this	means	that	there	are	no	separate	pieces,	or	sub-graphs,	of	the	graph;	for	a	
digraph,	it	means	that	there	are	some	places	in	the	graph	to	which	we	can	get	from	some	directions	but	
not	necessarily	able	to	return	to	the	starting	points.	
	
Connectivity	in	Undirected	Graphs	
Ø An	undirected	graph	is	called	connected	when	there	is	a	path	between	any	two	vertices	of	the	graph.	

The	depth	first	search	algorithm	can	be	used	for	recognizing	whether	a	graph	is	connected	provided	
that	the	loop	heading		

while	there	is	a	vertex	v	such	that	num	(v)	is	0	
is	removed.	Then,	after	the	algorithm	is	finished,	we	have	to	check	whether	the	list	edges	include	all				
vertices	of	the	graph	or	simply	check	if	i	is	equal	to	the	number	of	vertices.	

Ø Connectivity	comes	in	degrees.	A	graph	can	be	more	or	less	connected,	and	it	depends	on	the	number	
of	different	paths	between	its	vertices.		

Ø A	graph	is	called	n-connected	if	there	are	at	least	n	different	paths	between	any	two	vertices;	that	is,	
there	are	n	paths	between	any	two	vertices	that	have	no	vertices	in	common.	

Ø In	a	2-connected	or	biconnected	graph,	there	are	at	least	two	non	overlapping	paths	between	any	two	
vertices.		

Ø A	graph	is	not	biconnected	if	a	vertex	can	be	found	that	always	has	to	be	included	in	the	path	
between	at	least	two	vertices	a	and	b.		

Ø In	other	words,	if	this	vertex	is	removed	from	the	graph	(along	with	incident	edges),	then	there	is	no	
way	to	find	a	path	from	a	to	b,	which	means	that	the	graph	is	split	into	two	separate	subgraphs.	
Such	vertices	are	called	articulation	points,	or	cut-vertices.		

Ø If	an	edge	causes	a	graph	to	be	split	into	two	subgraphs,	it	is	called	a	bridge	or	cut-edge		
Ø Connected	subgraphs	with	no	articulation	points	or	bridges	are	called	blocks		

	
	
The	algorithm	uses	a	stack	to	store	all	currently	processed	edges.	After	an	articulation	point	is	identified,	
the	edges	corresponding	to	a	block	of	the	graph	are	output.	The	algorithm	is	as	follows:	
	
blockDFS(v)	
								pred(v)	=	num(v)	=	i++;	
								for	all	vertices	u	adjacent	to	v	

if	edge	(vu)	has	not	been	processed	
								push(edge(vu));	
								if	num(u)	is	0;	

blockDFS(u);	
if	pred(u)≥num(v)	
								e	=	pop()	
								while	e/edge(vu)	

output	e;	

17	
	

e	=	pop();	
								output	e;	
								else	

pred(v)	=	min	(pred(v),	pred(u));	
								else	if	u	is	not	the	parent	of	v	

pred(v)		=	min(pred(v),	num(u));	
	
blockSearch	()	
								for	all	vertices	v	

num(v)	=	0	
								i	=	1;	
								while	there	is	a	vertex	v	such	that	num(v)==0	

blockDFS	(v);	
	

	 	

18	
	

Connectivity	in	Directed	Graphs	
For	directed	graphs,	connectedness	can	be	defined	in	two	ways	depending	on	whether	or	not	the	direction	
of	the	edges	is	taken	into	account.	An	directed	graph	is	weakly	connected	if	the	undirected	graph	with	the	
same	vertices	and	same	edges	 is	connected.	A	directed	graph	 is	strongly	connected	 if	 for	each	pair	of	
vertices	 there	 is	 a	 path	 between	 them	 in	 both	 directions.	 The	 entire	 digraph	 is	 not	 always	 strongly	
connected,	 but	 it	 may	 be	 composed	 of	 strongly	 connected	 components	 (SCC),	 which	 are	 defined	 as	
subsets	of	vertices	of	the	graph	such	that	each	of	these	subsets	induces	a	strongly	connected	digraphs.	
To	determine	SCCs.	We	also	refer	to	depth	first	search.	Let	vertex	v	be	the	first	vertex	of	an	SCC	for	which	
depth	first	search	is	applied.	Such	a	vertex	is	called	the	root	of	the	SCC.	Because	each	vertex	u	in	this	SCC	
is	reachable	from	v,	num(v)	<	num(u),	and	only	after	all	such	vertices	u	have	been	visited,	the	depth	first	
search	 backtracks	 to	 v.	 In	 this	 case,	 which	 is	 recognized	 by	 the	 fact	 that	 pred(v)	 =	 num(v),	 the	 SCC	
accessible	from	the	root	that	can	be	output.	
The	problem	now	is	how	to	find	all	such	roots	of	the	digraph,	which	is	analogous	to	finding	articulation	
points	in	an	undirected	graph.	To	that	end,	the	parameter	pred	(v)	is	also	used,	where	pred	(v)		is	also	
used,	where	pred(v)	is	the	lower	number	chosen	out	of	num(v)	and	pred(u),	where	u	is	a	vertex	reachable	
from	v	and	belonging	to	the	same	SCC	as	v.	
The	algorithm	attributed	to	Tarjan	is	as	follows:	
	
strongDFS	(v)	
								prev(v)	=	num(v)	=	i++;	
								push(v);	
								for	all	vertices	u	adjacent	to	v	
																if	num(u)	is	0	 	
																								strongDFS(u)	

																		pred(v)	=	min(pred(v),num(u));	
																		if	pred(v)	==	num(v)	

w	=	pop();	
while	w≠v	

output	w	
w	=	pop();	

output	w;	
	
strongConnectedComponentSearch	()	
								for	all	vertices	v	
																num(v)	=	0;	 	

		i	=	1;	
		while	there	is	a	vertex	v	such	that	num(v)==0	
										strongDFS(v);	

	 	

19	
	

	
	
	 	

20	
	

Topological	Sort	
	
In	many	situations,	there	is	a	set	of	tasks	to	be	performed.	For	some	pairs	of	tasks,	it	matters	which	task	
is	performed	first,	where	for	other	pairs,	the	order	of	execution	is	unimportant.		
The	dependencies	between	tasks	can	be	shown	in	the	form	of	a	diagraph.	A	topological	sort	linearizes	a	
digraph;	that	 is,	 it	 labels	all	 its	vertices	with	numbers	1	……..|V|	so	that	 i<j	only	 if	there	is	a	path	from	
vertex	vi	to	vertex	vj.	The	diagraph	must	not	include	a	cycle;	otherwise,	a	topological	sort	is	impossible.	
The	algorithm	for	topological	sort	is	rather	simple.	We	have	to	find	a	vertex	v	with	no	outgoing	edges,	
called	a	sink	or	a	minimal	vertex,	and	then	disregard	all	edges	leading	from	any	vertex	to	v.	The	summary	
of	the	topological	sort	algorithm	is	as	follows:	
	
topologicalSort(digraph)	
								for	i=1	to	|V|	

find	a	minimal	vertex	v;	
num(v)=i;	
remove	from	diagraph	vertex	v	and	all	edges	incident	with	v	

	
	
	 	

21	
	

Actually,	it	is	not	necessary	to	remove	the	vertices	and	edges	from	the	digraph	while	it	is	processed	if	it	
can	be	ascertained	that	all	successors	of	the	vertex	being	processed	have	already	been	processed,	so	they	
can	be	considered	as	deleted.	And	once	again,	depth	first	search	comes	to	the	rescue.	By	the	nature	of	
this	method,	if	the	search	backtracks	to	a	vertex	v,	then	all	successors	of	v	can	be	assumed	to	have	already	
been	searched.	Here	is	how	depth	first	search	can	be	adapted	to	topological	sort:	
TS(v)	
								num(v)	=	i++;	
								for	all	vertices	u	adjacent	to	v	

	if	num(u)==0	
								TS(u);	
	else	if	TSNum(u)==0	

error	
								TSNum(v)	=	j++;	
topologcalSorting(digraph)	
								for	all	vertices	v	
																num(v)	=	TSNum(v)=0;	
								i	=	j=	1;	
								while	there	is	a	vertex	v	such	that	num	(v)	==0	

TS(v);	
								Output	vertices	according	to	their	TSNum’s	
	
	 	

22	
	

Networks	
	
Maximum	Flows	
An	important	type	of	graph	is	a	network.	A	network	can	be	exemplified	by	a	network	of	pipelines	used	to	
deliver	water	from	one	source	to	one	destination.	However,	water	is	not	simply	pumped	through	one	pipe	
but	through	many	pipes	with	many	pumping	stations	in	between.	The	pipes	are	of	different	diameters	
and	the	stations	of	different	power	so	that	the	amount	of	water	that	can	be	pumped	may	differ	from	one	
pipeline	to	another	
	
	
Let	us	consider	the	following	pipeline	with	eight	pipes	and	six	pumping	stations.	
	
	
	
	 	
	

	
	
	
	
	
	
	
	
	
Figure:	A	pipeline	with	eight	pipes	and	six	pumping	stations.	
	
The	network	has	eight	pipes	and	six	pumping	stations.	The	numbers	shown	in	the	figure	are	the	maximum	
capacities	of	each	pipeline.	The	problem	is	to	maximize	the	capacity	of	the	entire	network	so	that	it	can	
transfer	the	maximum	amount	of	water.	It	may	not	be	obvious	how	to	accomplish	this	goal.	It	 is	to	be	
noted	that	we	cannot	put	5	units	through	pipe	sa,	because	pipe	ab	cannot	transfer	it.		Also,	the	amount	
of	water	coming	to	station	b	has	to	be	controlled	as	well	because	if	incoming	pipes,	ab	and	cb	are	used	to	
full	capacity,	then	the	outgoing	pipe,	bt,	cannot	process	it	either.	It	is	far	from	obvious,	especially	for	large	
networks,	what	the	amounts	of	water	put	through	each	pipe	should	be	to	utilize	the	network	maximally.	
Computational	 analysis	 of	 this	 particular	 network	 problem	was	 initialized	 by	 Leser	 R.	 Ford	 and	 D	 ray	
Fulkerson.	Since	their	work,	scores	of	algorithms	have	been	published	to	solve	this	problem.	
	
A	network	is	a	diagraph	with	one	vertex	s,	called	the	source,	with	no	incoming	edges,	and	one	vertex	t,	
called	sink,	with	no	outgoing.	With	each	edge	e	we	associate	a	number	cap(e)	called	capacity	of	edge.	A		

c	

a	

s	

b	

t	

d	

5	

2	

3	
8	

5	

7	

4

3	

23	
	

flow	is	a	real	function	f:E-àR	that	assigns	a	number	to	each	edge	of	the	network	and	meets	these	two	
conditions:	

1. The	flow	through	an	edge	e	cannot	be	greater	than	its	capacity,	or	0≤f(e)	≤	cap	(e)	
2. The	total	flow	coming	to	a	vertex	v	is	the	same	as	the	total	flow	coming	from	it.	Or	Σ	f(edge(uv))	

=	Σf(edge(vw).	Where	v	is	neither	the	source	nor	the	sink.	
The	problem	now	is	to	maximize	the	flow	f	so	that	the	sum	Σ	f(edge(ut))	has	a	maximum	value	for	any	
possible	function	f.	This	is	called	a	maximum	flow	problem.	
	
	

