
1	
	

Unit	1:	Complexity	Analysis	
Data	Structure	
Data	structure	is	the	way	of	storing	data	in	a	computer	so	that	it	can	be	used	efficiently.	
There	are	two	types	of	data	structure	

1. Linear	 Data	 Structure:	 When	 the	 elements	 are	 stored	 on	 contiguous	 memory	 locations	 then	 data	
structure	is	called	linear	data	structure.	For	example,	array,	stack,	queue	etc.	

2. Non	 Linear	 Data	 Structure:	 In	 nonlinear	 data	 structure,	 elements	 are	 stored	 in	 non-contiguous	
memory	locations.	Eg	tree,	graphs,	etc.		

Data	structure	can	be	static	or	dynamic	in	nature.	
A	 static	 data	 structure	 is	 one	 whose	 capacity	 is	 fixed	 at	 creation.	 An	 array	 is	 an	 example	 of	 static	 data	
structure.	
A	dynamic	data	structure	 is	one	whose	capacity	 is	variable,	so	 it	can	expand	or	contract	at	any	time.	Linked	
List,	binary	tree	are	example	of	dynamic	data	structure.	
Operations	on	Data	Structure		

• Traversing	
• Searching	
• Sorting	
• Insertion	
• Deletion	

Algorithm:	An	 algorithm	 is	 finite	 set	 of	 instructions	 to	 perform	 the	 computational	 task,	 is	 finite	 number	 of	
steps.	 To	 develop	 a	 program	 of	 an	 algorithm,	 we	 select	 an	 appropriate	 data	 structure	 for	 that	 algorithm.	
Therefore	algorithm	and	its	associated	data	structures	form	a	program.	
Algorithm	+	Data	Structure	=	Program	
Data	structures	are	building	blocks	of	a	program.	
Properties	of	Algorithm	

• Input:	The	quantity	that	is	given	to	algorithm	initially	is	called	input.		
• Output:	The	quantity	produced	by	algorithm	is	called	output.	The	output	will	have	some	relationship	

with	input.	
• Finiteness:	The	algorithm	must	terminate	after	finite	number	of	steps.	
• Definiteness:	 Each	 step	 of	 the	 algorithm	 must	 be	 precisely	 defined	 that	 is	 each	 step	 should	 be	

unambiguous.	
Different	means	of	expressing	algorithms	

• Natural	Language	
• Pseudo	code	
• Flowchart	
• Programming	Language		

	 	

2	
	

Complexity	Analysis	of	Algorithm	
Several	algorithms	could	be	created	to	solve	a	single	problem.	These	algorithms	may	vary	in	the	way	they	get,	
process	 and	 output	 data.	 They	 could	 have	 significant	 differences	 in	 terms	 of	 performance	 and	 space	
utilization.	
It	is	very	convenient	to	classify	algorithms	based	on	the	relative	amount	of	time	or	relative	amount	of	space	
they	require	and	specify	the	growth	of	time/space	requirements	as	a	function	input	size.	
	
Computational	Complexity:	

It	indicates	how	much	effort	is	needed	to	apply	an	algorithm	or	how	costly	it	is.	
Two	Criteria:	
1. Time	 Complexity:	 The	 time	 complexity	 of	 an	 algorithm	 measures	 the	 amount	 of	 time	 taken	 by	 an	

algorithm	to	run	as	a	function	of	input.	
2. Space	 Complexity:	 The	 space	 complexity	 of	 an	 algorithm	 measures	 the	 amount	 of	 space	 taken	 by	 an	

algorithm	to	run	as	function	of	input.	
- The	factor	of	time	is	usually	more	important	than	that	of	space.	
- Run	time	is	always	system-dependent	
- Run	time	also	depends	on	the	language	in	which	a	given	algorithm	is	written	
Types	of	Analysis	

• Worst	Case	Running	Time:	 	 The	worst	 case	 running	 time	of	 an	algorithm	 is	 an	upper	bound	on	 the	
running	 time	 for	 any	 input.	 Knowing	 it	 gives	 us	 a	 guarantee	 that	 the	 algorithm	will	 never	 take	 any	
longer.	For	expressing	worst	case	running	time	of	an	algorithm	Big	O	notation	is	used.	

• Best	Case	Running	Time:	The	best	case	running	time	of	an	algorithm	 is	 lower	bound	on	the	running	
time	 for	 any	 input.	 The	 best	 rarely	 occurs	 in	 practice.	 For	 expressing	 best	 case	 running	 time	 of	 an	
algorithm	Big	Ω	notation	is	used.		

• Average	 Case	 Running	 Time:	 The	 average	 case	 running	 time	 of	 an	 algorithm	 is	 an	 estimate	 of	 the	
running	time	for	an	“average	input”.	For	expressing	average	case	running	time	of	an	algorithm	Big	Ɵ	
notation	is	used.	

• Amortized	 Analysis:	 In	 amortized	 analysis,	 the	 time	 required	 to	 perform	 a	 sequence	 of	 (related)	
operations	 is	 averaged	over	 all	 the	operations	 performed.	Amortized	 analysis	 is	 concerned	with	 the	
overall	cost	of	arbitrary	sequences.	It	is	the	average	performance	of	each	operation	in	the	worst	case.	
It	guarantees	the	average	performance	of	each	operation	in	the	worst	case.	
Amortized	analysis	can	be	used	to	show	that	the	average	cost	of	an	operation	is	small,	if	one	averages	
over	a	sequence	of	operations,	even	though	a	simple	operation	might	be	expensive.	

	
To evaluate an algorithm’s efficiency, the size n of a file or an array and the amount of time t required
to process the data should be used.

	 	

3	
	

Asymptotic	Complexity:	
- Any terms that do not substantially change the function’s magnitude should be eliminated from the

function
- The resulting function gives only an approximate measure of efficiency of the original function
- However, this approximation is sufficiently close to the original, especially for a function that

processes large quantities of data.
- This measure of efficiency is called asymptotic complexity
- It is used when disregarding certain terms of a function to express the efficiency of an algorithm or

when calculating a function is difficult or impossible and only approximations can be found.

Example
f (n) = n2 + 100n + log10n + 1,000

	
Big	O(oh)	Notation:	The	big	O	notation	gives	the	asymptotic	upper	bounds	of	the	running	time	of	an	
algorithm.	

A	function	f(n)	is	O(g(n))	if	and	only	if	there	exists	two	positive	numbers	c	and	N	such	that	f(n)<=c*g(n)	for	
all	n>=N.	We	say	that	g(n)	is	asymptotic	upper	bound	for	f(n).	
e.g: f (n) = 2n2 + 3n + 1 = O(n2)

Properties	of	Big	O	Notation:		
Property	1	(Coefficient):		

If	f(n)	is	c*g(n),	then	f(n)	is	O(g(n)).	
• Property	2	(Sum):		

If	f(n)	is	O(h(n))	and	g(n)	is	O(h(n)),	then	f(n)+g(n)	is	O(h(n)).		
• Property	3	(Sum):		

If	f1(n)	is	O(g1(n))	and	f2(n)	is	O(g2(n)),	then	f1(n)+f2(n)	is	O(max(g1(n),g2(n)).		
• Property	4	(Product):		

If	f1(n)	is	O(g1(n))	and	f2(n)	is	O(g2(n)),	then	f1(n)*f2(n)	is	O(g1(n)*g2(n)).		
If	f1(n)	is	O(n2)	and	f2(n)	is	O(n),	then	O(n2)*	O(n)	which	is	O(n3).	

• Property	5	(Transitivity):	
If	f(n)	is	O(g(n))	and	g(n)	is	O(h(n)),	then	f(n)	is	O(h(n)).	
	

4	
	

Example:

f (n) = 2n2 + 3n + 1 = O(n2)

where g(n) = n2

We obtain these values by solving the inequality: 2n2 + 3n + 1<=cn2

or equivalently

2+ 3/n + 1/n2 <= c

	

	

	

Big	Omega	Notation:		

A	function	f(n)	is	Ω(g(n))	if	there	exist	positive	numbers	c	and	N	such	that	f(n)	≥	cg(n)	for	all	n	≥	N.	

The only difference between this definition and the definition of big-O notation is the direction
of the inequality (i.e. >= and <=).

There is an interconnection between these two notations expressed by the equivalence

f (n) is Ω(g(n)) iff g(n) is O(f (n))

Big	Theta	Notation:		
A	function	f	(n)	is	Ɵ	(g	(n))	is	there	exist	positive	numbers	c1,	c2	and	N	such	that	c1g	(n)	≤f(n)	≤c2g	(n)	for	
all	n≥N.		
We	see	that:	

f (n) is Θ(g(n)) if f (n) is O(g(n)) and f (n) is Ω(g(n)).

For	example,	5x2+6	is	Ɵ	(n2)	because	n2<5n2+6<6n2	whenever	n>5	and	c1=1	and	c2	=	6.	
	
	
	

	 	

5	
	

Possible	Problems	
All	 the	 notations	 serve	 the	 purpose	 of	 comparing	 the	 efficiency	 of	 various	 algorithms	 designed	 for	
solving	the	same	problem.	However,	if	only	big	Os	are	used	to	represent	the	efficiency	of	algorithms,	
then	 some	 of	 them	 may	 be	 rejected	 prematurely.	 The	 problem	 is	 that	 in	 the	 definition	 of	 big	 O	
notation,	f	is	considered	O(g(n))	if	the	inequality	f(n)≤cg(n)	holds	in	the	long	run	for	all	natural	numbers	
except	very	few	exceptions.	This	is	enough	to	meet	the	conditions	of	the	definition.	However,	this	may	
be	of	little	practical	significance	if	the	constant	c	in	f(n)≤cg(n)	is	prohibitively	large,	say	108.		

Consider	 that	 there	are	 two	algorithms	 to	 solve	 a	 certain	problem	and	 suppose	 that	 the	number	of	
operations	required	is	108n	and	10n2.	The	first	function	is	O(n)	and	the	second	is	O(n2).	Using	just	the	
big	O	information,	the	second	algorithm	is	rejected	because	the	number	of	steps	grows	too	fast.	It	 is	
true	but,	again	in	the	long	run,	because	for	n≤107,	which	is	10	million,	the	second	algorithm	performs	
fewer	operations	than	the	first.	In	this	case	the	second	algorithm	is	preferable.	
For	these	reasons,	it	may	be	desirable	to	use	one	more	notation	that	includes	constants	which	are	very	
large	for	practical	reasons.	
	
Examples	of	Complexities	
There	are	different	Big-	O	expressions	such	as	O(1),	O(log	n),	O(n),	O(nlogn),	O(n2),	O(n3)	and	O(2n)	and	
their	commonly	used	names	are:	
• O(1):	Constant	time.	This	means	an	increase	in	the	amount	of	data	size	(n)	as	no	effect.	
• O(log	n):	Logarithmic	time.	This	means	when	operations	increase	once	each	time	n	doubles.	
• O(n):	Linear	time.	The	linear	time	complexity	means	operation	time	also	increases	with	the	order	

of	n.	
• O(nlogn):	Linear	Logarithmic	Time:	 In	 linear	 logarithmic	 time	operation	 increases	 in	 the	order	of	

n*logn.	
• O(n2):	Quadratic:		Quadratic	Complexity	means	operation	increases	with	square	of	input.		
• O(n3)	:	Cubic	complexity:		
• O(2n):	Exponential	complexity.	

The	time	taken	that	is	number	of	steps	when	problem	size	increase	can	be	summarized	in	the	following	table.	
Input	size	(n)	 O(1)	 O(logn)	 O(n)	 O(n*logn)	 O(n2)	 O(n3)	 O(2n)	
1	 1	 0	 1	 0	 1	 1	 2	
2	 1	 1	 2	 2	 4	 8	 4	
4	 1	 2	 4	 8	 16	 64	 16	
8	 1	 3	 8	 24	 64	 512	 256	
16	 1	 4	 16	 64	 256	 4096	 65536	
32	 1	 5	 32	 160	 1024	 32768	 4294967296	
	
The	best	time	in	the	above	list	is	obviously	constant	time,	and	the	worst	is	exponential	time	which,	as	we	have	
seen,	quickly	overwhelms	even	the	fastest	computers	even	for	relatively	small	n.	Polynomial	growth	(linear,	
quadratic,	cubic	etc)	is	considered	manageable	as	compared	to	exponential	growth.	
We	can	say	that		
O(1)	<	O(logn)<O(n)<O(n*logn)<O(n2)<O(n3)<O(2n)	
	 	

6	
	

Finding	Asymptotic	Complexity:	Example	
Asymptotic	 bounds	 are	 used	 to	 estimate	 the	 efficiency	 of	 algorithms	 by	 assessing	 the	 amount	 of	 time	 and	
memory	needed	to	accomplish	the	task	for	which	the	algorithms	were	designed.	
In	most	cases,	we	are	interested	in	time	complexity,	which	usually	measures	the	number	of	assignments	and	
comparisons	performed	during	the	execution	of	a	program	
Let	us	consider	the	following	program.	
Example	1	
for(i=0,sum=0;i<n;i++)	
sum	=	sum+a[i];	
First,	two	variables	are	initialized,	then	the	for	loop	iterates	n	times,	and	during	each	iteration,	it	executes	two	
assignments,	one	of	which	updates	sum	and	the	other	of	which	updates	i.	Thus,	there	are	2+2*n	assignments	
for	the	complete	run	of	this	for	loop;	its	asymptotic	complexity	is	O(n).	
	
Example	2	
for(i=0;i<n;i++){	

for(j=1,sum	=	a[0];j<=i;	j++){	
	 Sum+	=	a[j];	
	 System.out.println	(“Sum	for	subarray	0	through	“+i+”	is	“+sum);	
}	
}	
Before	the	loops	start,	i	is	initialized.	The	outer	loop	is	performed	n	times,	executing	in	each	iteration	an	inner	
for	loop,	print	statement,	and	assignment	statements	for	i,	 j	and	sum.	The	inner	loop	is	executed	i	times	for	
each	 iє{1,………n-1}	with	 two	assignments	 in	each	 iteration;	one	 for	 sum	and	one	 for	 j.	 Therefore,	 there	are	
1+3n+Σ2i	=	1+3n+2(1+2+3+4+……+n-1)	=	1+3n+n(n-1)	=	n2+2n+1	=	O(n2)	
	
Algorithms	with	nested	loops	usually	have	a	large	complexity	than	algorithms	with	one	loop,	but	it	does	not	
have	 to	 grow	 at	 all.	 For	 example,	 we	 may	 request	 printing	 sums	 of	 numbers	 in	 the	 last	 five	 cells	 of	 the	
subarrays	starting	in	position	0.	We	adopt	the	foregoing	code	and	transform	it	to	
for(i=4;i<n;i++){	
	 for(j=i-3,sum	=	a[i-4];j<=I;j++)	
	 sum+	=	a[j];	
												System.out.println	(“sum	for	subarray	“+(i-4)+”	through		“++”		is	“+sum);	
}	
The	outer	loop	is	executed	n-4	times.	For	each	i,	the	inner	loop	is	executed	only	four	times;	For	each	iteration	
of	the	outer	loop,	there	are	eight	assignments	in	the	inner	loop,	and	this	number	does	not	depend	on	the	size	
of	 the	 array.	With	 the	 initialization	 of	 i,	 n-4	 auto	 increments	 of	 i,	 and	 n-4	 initializations	 of	 j	 and	 sum,	 the	
program	makes	1+8.(n-4)	=	O(n)	assignments.	
Analysis	of	these	two	examples	is	relatively	uncomplicated	because	the	number	of	times	the	loops	executed	
did	not	depend	on	the	ordering	of	the	arrays.	
	
int	binarySearch(int	[]	,	int	key){	
int	lo	=	0,	mid,	hi	=	arr.length-1;	
while(low<=hi){	
mid	=	(lo+hi)/2;	
if(key<arr[mid])	
hi	=	mid-1;	
else	if	(arr[mid]<key)	

7	
	

lo	=	mid+1;	
else	
return	mid;	
}	
return	-1;	
}	
Let	us	consider	the	size	of	an	array	be	n.	If	key	is	in	the	middle	of	the	array,	the	loop	executes	only	one	time.	
Otherwise,	the	algorithm	looks	at	one	of	the	halves	of	size	n/2,	then	at	one	of	the	halves	of	this	half,	of	size	
n/22	and	so	on,	until	the	array	is	of	size	1.	Hence,	we	have	the	sequence	n/2,	n/22,……….n/2m	and	we	want	to	
know	the	value	of	m.	But	the	last	term	of	this	sequence	n/2m	equals	1,	from	which	we	have	m	=	logn.	So	the	
fact	that	k	is	not	in	the	array	can	be	determined	after	logn	iterations	of	the	loop.	
	
Computational	complexity	
Computational	 complexity	 is	 a	branch	of	 computer	 science	and	mathematics	 that	deals	with	analysis	of	
algorithms.	It	deals	with	nature	of	algorithms	and	classifies	according	to	their	complexity.	

Complexity	Classes	
The	analysis	of	algorithms	and	 the	big	O()	notations	allow	us	 to	 talk	about	 the	efficiency	of	a	particular	
algorithm.	However,	 they	have	nothing	 to	 say	about	whether	 there	 could	be	a	better	algorithm	 for	 the	
problem	 at	 hand.	 The	 field	 of	 complexity	 analysis	 analyzes	 problems	 rather	 than	 algorithms.	 The	 first	
gross	division	 is	between	problems	 that	 can	be	 solved	 in	polynomial	 time	and	problems	 that	 cannot	be	
solved	in	polynomial	time,	no	matter	what	algorithm	is	used.	

	
There	are	several	complexity	classes	in	the	theory	of	computation.	Some	major	classes	are	as	follows	
Class	 P:	 The	 complexity	 class	 p	 is	 the	 set	 of	 decision	 problems	 that	 can	 be	 solved	 by	 a	 deterministic	
algorithm	in	polynomial	time.	Problems	belonging	to	p	are	said	to	have	efficient	algorithms.	Any	algorithm	
having	complexity	of	lower	order	polynomial	is	accepted	as	an	efficient	algorithm.	
The	 class	 of	 problems	 which	 can	 be	 solved	 in	 time	 O(nk)	 for	 some	 k	 is	 called	 class	 P	 problem.	 These	
problems	are	sometimes	called	easy	problems,	because	the	class	contains	 those	problems	with	running	
times	 like	O(logn)	and	O(n).	But	 is	also	contains	 those	with	time	O	(n100),	 so	 the	name	“easy”	should	be	
taken	too	literally.	
	
Decision	Problem:	A	problem	that	has	only	 two	answers	 “yes”	and	“no”	 is	 called	decision	problem.	For	
example,	the	question	“Is	the	number	N	prime?	
	
Deterministic	Algorithm:	A	deterministic	algorithm	is	a	uniquely	defined	(determined)	sequence	of	steps	
for	a	particular	 input.	That	 is,	given	an	 input	and	a	step	during	execution	of	 the	algorithm,	there	 is	only	
one	way	to	determine	the	next	step	that	the	algorithm	can	make.	
	
Non	 deterministic	 Algorithm:	 A	 non-deterministic	 algorithm	 is	 an	 algorithm	 that	 can	 use	 a	 special	
operation	that	makes	a	guess	when	a	decision	is	to	made.	
	 	

8	
	

	Class	NP	
	The	class	of	decision	problems	that	have	verification	algorithms	with	polynomials	complexity	is	known	as	
complexity	class	NP.		
The	notation	NP	actually	refers	non-deterministic	polynomial	time	algorithms	
Example:	Chromatic	Number	(Color):	Given	a	graph	and	an	integer	k,	is	there	is	way	to	color	the	vertices	
with	‘k’	colors	such	that	adjacent	vertices	are	colored	differently?		
	
The	P=NP	question:	The	question	of	whether	NP	is	the	same	set	as	P	that	is	whether	the	problem	that	can	
be	 solved	 in	 non-deterministic	 polynomial	 time	 can	 be	 solved	 in	 deterministic	 time	 is	 one	 of	 the	most	
important	open	question	 in	 theoretical	 computer	 science.	Due	 to	 the	wide	 implication	a	 solution	would	
present.	If	it	were	true,	many	important	problems	would	be	shown	to	have	“efficient	solutions”.	The	P=NP	
is	 one	 of	 the	millennium	 prize	 problems	 proposed	 by	 the	 Clay	mathematics	 Institute.	 The	 solution	 of	
which	is	a	USD	1000000	prize	for	the	first	person	to	provide	a	solution.	
	
Problem	 Reduction:	 	 A	 problem	Q	 can	 be	 reduced	 to	 another	 problem	Q’	 if	 any	 instance	 of	 Q	 can	 be	
“easily	rephrased”	as	an	instance	of	Q’,	the	solution	to	which	provides	a	solution	to	the	instance	of	Q.	
	
NP	Hard:			
A	problem	is	NP	hard	if	all	the	problems	in	NP	can	be	polynomially	reduced	to	it.	
An	 example	 of	 an	 NP	 hard	 problem	 is	 the	 optimization	 problem	 of	 finding	 the	 least	 cost	 cyclic	 route	
through	 all	 nodes	of	 the	weighted	 graph.	 This	 is	 commonly	 known	as	 the	 travelling	 sales	man	problem	
(TSP).	
	
	NP	Complete:	The	NP	complete	are	the	hardest	problems	among	the	NP	class.	The	NP	complete	is	set	of	
decision	problems	X	such	that:	
1	 	XєNP	
2	 	Every	problem	in	NP	is	reducible	to	X	i.e.	NP-complete	are	the	problems	among	the	NP	class	

	
	
	
	
	
	
	

