
1	
	

Unit 9: Hashing
Searching
Searching refers to finding a given data item in a set, list or array. In general searching is of two
types: Linear search and binary search.
Linear search or sequential search:
In sequential search we search for a key in a sequential manner, accessing each element only
once from beginning of the data structure.
In	a	sequential	search,	the	table	that	stores	the	elements	is	searched	successively,	and	the	key	
comparison	determines	whether	an	element	has	been	found.
These include arrays, lists and sequential files.
This search will take O(n) worst case
If element is found then search is said to be successful else unsuccessful. The C code for the
same is give below. Here array is assumed to be unsorted.
class searching
{

public static boolean Linearsearch(int [] a,int n)
{

 int i,t=0;
 for(i=0;i<a.length;i++)

{
 if(a[i]==n)
 {
 t=1;
 break;
 }
 }
 if(t==1)
 return true;
 else
 return false;
 }
 public static void main(String[] args)

{
 int arr[] = {1,20,30,40,10,22};
 System.out.println(Linearsearch(arr,22));
 }
}
For searching an element in the array using linear search, we search the entire array from the
beginning and comparing every array element with the data to be searched. As soon as matching
occurs we set the found variable to 1(which was 0 in the beginning) and break from top. Outside
the loop it is checked whether found is 1 or not and depending upon result is displayed.
Complexity of Linear Search
Complexity of any searching method depends on the number of comparisons performed to
search for a specific element in the array of N elements. In case element is found within the very
first comparison, it will be the best case for searching (least probable) and time complexity will
be O(1). In the worst case element may be at the end of the list so that number of comparisons

2	
	

will be N. Time complexity in this case will be O(N). On an average case the number of
comparisons will be approximately (N+1)/2. But still complexity will be O(N). This result is
obtained from the probabilistic theory.
Binary Search:
In binary search over the array of N elements, we first find out the middle position of the array.
We then compare the middle element of the array with the data to be searched. If data is equal to
the middle element, it is found. If data element is less than middle element, it resides into the
lower half of the array else it resides into the upper half of the array. The process is repeated for
the other half of the array (lower and upper) and finally the element will be found as the middle
element or search will be unsuccessful.
The following Java program shows binary search:
class BSearch
{
 public static boolean BinarySearch(int [] arr, int val)

{
 int low,high,mid;
 boolean b = false;
 low = 0;
 high = arr.length-1;
 while(low<=high)

{
 mid = (low+high)/2;
 if(arr[mid]==val)

{
 b = true;
 break;
 }

if(arr[mid]>val)
 high = mid-1;
 else
 low = mid+1;
 }
 return b;
 }
 public static void main (String [] args)

{
 int arr[] = {1,2,4,5,12,15,20,23,25,27,31};
 if(BinarySearch(arr,12))
 System.out.println ("The element is found");
 else
 System.out.println ("Element is not found");

}
}
Complexity of Binary Search
It is clearly visible from the code for binary search that each comparison divides the sub list into two
halves. Hence the complexity of binary search will be O(log N). Due to this complexity, binary search is

3	
	

considered as one of the most efficient searching technique. But there are some limitations of binary
search. The first one is that original list must be sorted. In case list is not sorted, we need to apply some
sorting algorithm to sort the list first.
The main operation used by all searching methods was comparison of keys. In a sequential
search, the table that stores the elements is searched successively, and the key comparison
determines whether an element has been found. In a binary search, the table that stores the
elements is divided successively into halves to determine which cell of the table to check, and
again, the key comparison determines whether an element has been found. Similarly, the
decision to continue the search in a binary search tree in a particular direction is accomplished by
comparing keys.
A different approached to searching calculates the position of the key in the table based on the
value of the key. The value of the key is only indication of the position. When the key is known,
the position in the table can be accessed directly, without making any preliminary tests, as
required in a binary search or when searching a tree. This means that the search time is reduced
from O(n), as in a sequential search, or from O(logn), as in binary search to 1 or at least O(1);
regardless of the number of elements being searched, the run time is always the same.
We need to find a function h that can transform a particular key K, be it s string, number, record
or the like, into an index in the table used for storing items of the same type as K. The function h
is called a hash function. If h transforms different keys into different numbers, it is called a
perfect hash function. To create a perfect hash function, which is always the goal, the table has to
contain at least the same number of positions as the number of elements being hashed. But the
number of elements is not always known ahead of time.
Hash	

Hash	 Table	 is	 a	 data	 structure	which	 stores	 data	 in	 an	 associative	manner.	 In	 a	 hash	 table,	 data	 is	
stored	 in	 an	 array	 format,	 where	 each	 data	 value	 has	 its	 own	 unique	 index	 value.	 Access	 of	 data	
becomes	very	fast	if	we	know	the	index	of	the	desired	data.	

Thus,	it	becomes	a	data	structure	in	which	insertion	and	search	operations	are	very	fast	irrespective	of	
the	 size	 of	 the	 data.	 Hash	 Table	 uses	 an	 array	 as	 a	 storage	 medium	 and	 uses	 hash	 technique	 to	
generate	an	index	where	an	element	is	to	be	inserted	or	is	to	be	located	from.	

Hashing	
Hashing	 is	 a	 technique	 to	 convert	 a	 range	of	 key	 values	 into	 a	 range	of	 indexes	 of	 an	 array.	We're	
going	to	use	modulo	operator	to	get	a	range	of	key	values.	Consider	an	example	of	hash	table	of	size	
20,	and	the	following	items are to be stored.

4	
	

Linear	Probing	
As we can see, it may happen that the hashing technique is used to create an
already used index of the array. In such a case, we can search the next empty
location in the array by looking into the next cell until we find an empty cell. This
technique is called linear probing.

Hash Functions

The function h is said to be hash function such that h can transform a particular key K into an
index in the table for storing items of the same type as K.
The number of hash functions that can be used to assign positions to n items in a table of m
positions (n≤m) is equal to mn. The number of perfect hash functions is the same as the number
of different placement of these items in the table and is equal to m!/(m-n)!. For example, for 50
elements and a 100 cell array, there are 10050 = 10100 has functions, out of which “only” 1094
(one in one million) are perfect. Most of these functions are too unwieldy for practical
applications and cannot be expressed with a formula.
Types of Hash Functions:
1. Division		
A hash function must guarantee that the number it returns is valid index to one of the table cells.
The simplest way to accomplish this is to use division modulo TSize = sizeof (table), as in h(K) =
K mod TSize, if K is a number. It is best if TSize is a prime number; otherwise, h (K) = (K mod p)

5	
	

mod TSize for some prime p>TSize can be used. However, nonprime divisors may work equally
well as prime divisors provided that they do not have prime factors less than 20.

2. Folding	
In this method, the key is divided into several parts (which conveys the true meaning of the word
hash). These parts are combined or folded together and are often transformed in a certain way to
create the target address. There are two types of folding: Shift folding and boundary folding.
The key is divided into several parts and these parts are then processed using a simple operation
such as addition to combine them in a certain way. For example, a social security number (SSN)
123-45-6789 can be divided into three parts, 123, 456, 789 and then these parts can be added.
(i)Shift folding: they are put underneath one another and then processed.

123-456-789 ---> 123+456+789 = 1368
The resulting number is, 1368 can be divided modulo TSize or, if the size of the table is 1000,
the first three digits can be used for the address. To be sure, the division can be done in many
different ways.

In the case of strings, one approach processes all characters of the string by “xor”ing them
together and using the results for the address. For example, for the string “abcd”, h(“abcd”) =
“a”^”b”^”c”^”c”. However, this simple method results in addresses between the numbers 0 and
127

(ii) With	boundary	folding,	the	key	is	seen	as	being	written	on	a	piece	of	paper	that	is	folded	on	the	
borders	between	different	parts	of	the	key.	In	this	way,	every	other	part	will	be	put	in	the	reverse	order.		

 123-456-789 ---> 123+654+789 = 1566

In both versions, the key is usually divided into even parts of some fixed size plus some remainder and
then added.

3. Mid	Square	Function	
In	 the	mid	square	method,	 the	key	 is	 squared	and	 the	middle	or	mid	part	of	 the	 result	 is	used	as	 the	
address.	 If	 the	 key	 is	 a	 string,	 it	 has	 to	 be	 preprocessed	 to	 produce	 a	 number	 by	 using,	 for	 instance,	
folding.	 In	 a	 mid-square	 hash	 function,	 the	 entire	 key	 participates	 in	 generating	 the	 address	 so	 that	
there	is	a	better	chance	that	different	addresses	are	generated	for	different	keys.	For	example,	if	the	key	
is	3121	 then	31212	=	9740641	and	 for	 the	1000	cell	 table,	h	 (3121)	=	406	which	 is	 the	middle	part	of	
31212.	 In	practice,	 it	 is	more	efficient	to	choose	a	power	of	2	for	the	size	of	the	table	and	extract	the	
middle	part	of	the	bit	representation	of	the	square	of	a	key.	 If	we	assume	that	the	size	of	the	table	 is	
1024,	 then,	 in	 this	 example,	 the	 binary	 representation	 of	 	 	 31212	 is	 the	 bit	 string	
100101001010000101100001,	with	 the	middle	part	 shown	 in	bold	 italics.	 This	middle	part,	 the	binary	
number	 01011000010	 is	 equal	 to	 322.	 This	 part	 can	 be	 easily	 extracted	 by	 using	 a	 mask	 and	 shift	
operation.	
A	string	would	first	be	transformed	into	a	number,	say	by	folding

4. Extraction		
In the extraction method, only a part of the key is used to compute the address. For the social
security number 123-456-789, this method might use the first four digits, 11234; the last four
6789, the first two combined with last two, 1289 or some other combination. Each time only a

6	
	

portion of the key is used. If this portion is carefully chosen, it can be sufficient for hashing,
provided the omitted portion distinguishes the keys only in significant way. For example, in
some university settings, all international students’ ID numbers start with 999. Therefore, the
first three digits can be safely omitted in hash function that uses student IDs for computing table
positions.
Similarly,	the	starting	digits	of	the	ISBN	code	are	the	same	for	all	books	published	by	the	same	publisher	
(e.g.,	0534	for	Brooks/Cole	Publishing	Company).	Therefore,	they	should	be	excluded	from	the	
computation	of	addresses	if	a	data	table	contains	only	books	from	one	publisher.		

Collision Resolution
 The straightforward hashing is not without its problems, because for almost all hash functions,
more than one key can be assigned to the same position. For example, if the hash function h1
applied to names returns the ASCII value of the first letter of each name (i.e., h1(name) =
name[0]), then all names starting with the same letter are hashed to the same position. This
problem can be solved by finding a function that distributes the names more uniformly in the
table. For example, the function h2 could add the first two letters (i.e., h2(names) = name [0] +
name [1]), which is better than h1. Even if all the letters are considered (i.e., h3(name)=name
[0]+……name[length(name)-1), the probability of hashing different names to the same location
still exist. The function h3 is the best of the three because it distributes the names most uniformly
for the defined function, but it also tacitly assumes that the size of the table has been increased.

(i) Open	Addressing	

In the open addressing method, when a key collides with another key, the collision is resolved by
finding an available table entry other than the position (address) to which the colliding key is
originally hashed. If position h(k) is occupied, then the positions in the probing sequence
norm(h(K)+p(1)), norm(h(K)+p(2)),…………norm(h(K))+p(i)),…….
are tried repeatedly until table is full.
The function p is a probing function, i is a probe, and norm is a normalization function, most
likely, division modulo the size of the table.

The simplest method is the linear probing, for which p(i) = i, and for the ith probe, the position
to be tried is (h(K)+i) mod TSize. In linear probing, the position in which a key can be tried is
found by sequentially searching all positions starting from the position calculated by the hash
function until an empty cell is found.

Another method is a quadratic probing and the resulting formula is:

P(i) = h(K)+i2, h(K)-i2 for i=1,2,,,,,,(TSize-1)/2.

Including the first attempt to hash K, this results in the sequence:
h(K), h(K)+1,h(K)-1, h(K)+4,h(K)-4,…………………h(K)+(TSize-1)2/4, h(K)- (TSize-1)2/4
all divided modulo TSize.

7	
	

Figure: Resolving collisions with linear probing method. Subscripts indicate the home positions
of the keys being hashed.

Figure: Resolving collisions with quadratic probing method

8	
	

(ii) Chaining	

Keys do not have to be stored in the table itself. In chaining, each position of the table is
associated with a linked list or chain of structures whose info fields store keys or reference to
keys. This method is called separate chaining, and a table of references is called a scatter table.
In this method, the table can never overflow, because the linked lists are extended only upon the
arrival of the new keys. For short linked lists, this is a very fast method, but increasing the length
of these lists can significantly degrade retrieval performance. Performance can be improved by
maintaining an order on all these lists so that, for unsuccessful searches, an exhaustive search is
not required in most cases or by using self-organizing linked list.
This method requires additional space for maintaining references. The table stores only
references, and each node requires one reference field. Therefore, for n keys, n+TSize references
are needed, which for large n can be a very demanding requirement.
A version of chaining called coalesced hashing (or coalesced chaining) combines linear probing
with chaining. In this method, the first available position is found for a key colliding with
another key, and the index of this position is stored with the key already in the table. In this way,
a sequential search down the table can be avoided by directly accessing the next element on the
linked list. Each position pos of the table includes two fields : an info field for a key and next
field with the index of the next key that is hashed to pos. Available positions can be marked by ,
say, -2 in next; -1 can be used to indicate the end of a chain. This method requires TSize.
(sizeof(reference)+sizeof(next)) more space for the table is addition to the space required for the
keys. This is less than for chaining, but the table size limits the number of keys that can be
hashed into table.
An overflow area known as a cellar can be allocated to store keys for which there are no room in
the table.

Figure: In chaining, colliding keys are put on the same linked list.

9	
	

Figure: Coalesced hashing puts a colliding key in the last available position of the table.

Figure: Coalesced hashing that uses a cellar.

(iii) Bucket Addressing

Another solution to the collision problem is to store colliding elements in the same position in
the table. This can be achieved by associating a bucket with each address. A bucket is a block of
space large enough to store multiple items.
In this implementation, hash table slots are grouped into buckets. The M slots of table are
divided into B buckets, with each bucket consisting of M/B slots.

By using buckets, the problem of collisions is not totally avoided. If a bucket is already full, then
an item hashed to it has to be stored somewhere else. By incorporating the open addressing

10	
	

approach, the colliding item can be stored in the next bucket if it has an available slot when using
linear probing or it can be stored in some other bucket when, say, quadratic probing is used.
The colliding items can also be stored in an overflow area. In this case, each bucket includes a
field that indicates whether the search should be continued in this area or not. It can be simply a
yes/no marker. In conjunction with chaining with chaining, this marker can be the number
indicating the position in which the beginning of the linked list associated with this bucket can be
found in the overflow area.

Figure: Collision Resolution with buckets and linear probing method

Figure: Collision Resolution with buckets and overflow area (cellar)

11	
	

Deletion
When we delete data from a hash table, we have to maintain this table. With a chaining method,
deleting an element leads to the deletion of a node from a linked list holding the element. For
other methods, a deletion operation may require a more careful treatment of collision resolution,
except for the rare occurrence when a perfect hash function is used.
Consider the following table, in which the keys are stored using linear probing. The keys have
been entered in the following order: A1, A4, A2, B4, B1. After A4 is deleted and position 4 is freed
(Figure b), we try to find B4 by first checking position 4 but this position is now empty, so we
may conclude that B4 is not in the table. The same result occurs after deleting A2 and making cell
2 as empty (Figure c). Then, the search for B1 is unsuccessful, because if we are using linear
probing, the search terminates at position 2. The situation is the same for the other open
addressing methods.
If we leave deleted keys in the table with markers indicating that they are not valid elements of
the table, any subsequent search for an element does not terminate prematurely. When a new key
is inserted, it overwrites a key that is only space filler. However, for a large number of deletions
and a small number of additional insertions, the table becomes overloaded with deleted records,
which increases the search time because the open addressing methods require testing the deleted
elements. Therefore, the table should be purged after a certain number of deletions by moving
undeleted elements to the cells occupied by deleted elements. Cells with deleted elements that
are not overwritten by this procedure are marked as free.

12	
	

Program for collision detection using bucket Addressing

class Hash{
 int data[][];
 int d1;
 int d2;
 public Hash(){
 data = new int[0][0];
 }
 public Hash(int m,int n){
 data = new int[m][n];
 d1 = m;
 d2 = n;
 }
 public void initialize(){
 for(int i=0;i<d1;i++)
 for(int j=0;j<d2;j++)
 data[i][j]=-1;
 }
 public void insert(int num)
 {
 int N = data.length;
 int i = num%N;
 int t=0, j=i;
 if(data[i][0] ==-1)
 data[i][0] = num;
 else
 {
 do
 {
 int k=1;
 do{
 if(data[j][k]==-1)

{
 data[j][k] = num;
 t=1;
 break;
 }
 k++;
 if(k>2)break;
 }while(k<d1);
 j = (j+1)%d1;
 }while(t<1);
 }
 }
 public void printAll(){

13	
	

 for(int i=0;i<d1;i++){
 System.out.print("Bucket "+ i+" :");
 for(int j=0;j<d2;j++)
 {
 System.out.print(data[i][j]+" ");
 }
 System.out.println();
 }
 }
 }
public class HashingBucket {
public static void main(String[] args) {
 int arr[]={14,28,35,21,5,14,7};
 Hash h = new Hash(arr.length,3);
 h.initialize();
 for(int i=0;i<arr.length;i++)
 h.insert(arr[i]);
 h.printAll();
}
}

The output of the above program is:
Bucket 0 :14 28 35
Bucket 1 :-1 21 14
Bucket 2 :-1 7 -1
Bucket 3 :-1 -1 -1
Bucket 4 :-1 -1 -1
Bucket 5 :5 -1 -1
Bucket 6 :-1 -1 -1

