
1	
	

Unit	8	Sorting	
The	 efficiency	 of	 data	 handling	 can	 be	 increased	 if	 the	 data	 are	 sorted	 according	 to	 some	
criteria	of	order.	It	is	often	necessary	to	sort	data	before	processing.	We	choose	some	criteria	
that	 is	 used	 to	 order	 data.	 The	 choice	will	 vary	 from	 application	 to	 application	 and	must	 be	
defined	by	the	user.	Very	often,	the	sorting	criteria	are	natural,	as	in	case	of	numbers.	A	set	of	
numbers	can	be	sorted	in	ascending	or	descending	order.	
The	final	ordering	of	data	can	be	obtained	in	a	variety	of	ways,	and	only	some	of	them	can	be	
considered	 meaningful	 and	 efficient.	 To	 decide	 which	 method	 is	 best,	 certain	 criteria	 of	
efficiency	 have	 to	 be	 established	 and	 a	 method	 for	 quantitatively	 comparing	 different	
algorithms	must	be	chosen	
To	make	the	comparison	machine	independent,	certain	critical	properties	of	sorting	algorithms	
should	be	defined	when	comparing	alternative	methods.	Two	such	properties	are	the	number	
of	comparisons	and	the	number	of	data	movements.	To	sort	a	set	of	data,	the	data	have	to	be	
compared	and	moved	as	necessary;	the	efficiency	of	these	two	operations	depends	on	the	size	
of	the	data	set.	
Elementary	Sorting	Algorithms:	
1. Insertion	Sort	
2. Selection	Sort	
3. Bubble	Sort	
Efficient	Sorting	Algorithm:	
1. Heap	Sort	
2. Quick	Sort	
3. Merge	Sort	
4. Radix	Sort	
	
Elementary	Sorting	Algorithms:	
	
1. Insertion	Sort:	 In	 the	 insertion	sort,	elements	are	 inserted	 into	 their	proper	 location	such	

that	array	will	be	sorted.	Assume	we	have	array	ARR	with	5	elements.	
i. In	the	first	round	ARR	[0]	will	be	itself	sorted.	
ii. In	the	second	round	ARR	[0]	and	ARR	[1]	will	be	compared	and	they	will	be	sorted	such	that	the	two	

elements	are	in	order	as:	ARR	[0]	<ARR	[1].	
iii. In	the	third	round	ARR[2]	will	be	inserted	among	ARR[0]	and	ARR[1]	such	that	the	three	will	appear	in	

the	order	as	:	ARR[0]<ARR[I]<ARR[2].	
iv. In	the	fourth	round	ARR[3]	will	be	inserted	among	ARR[0]	to	ARR[2]	such	that	the	four	will	appear	in	

order	as	:	ARR[0]	<ARR[1]<ARR[2]<ARR[3].	
v. Finally	in	the	last	round	ARR[4]	will	be	inserted	among	ARR[0]	to	ARR[3]	such	that	the	five	will	appear	

in	order	as	:	ARR[0]<ARR[1]<ARR[2]<ARR[3]>ARR[4].	

Thus	in	every	pass,	proper	location	of	the	element	to	be	inserted	is	found	and	element	is	inserted	at	that	
location.	To	better	understand	let’s	sort	the	following	numbers	using	insertion	sort.	The	Java	method	for	
insertion	sort	is	as	follows:	

	 	

2	
	

void	Insertion_sort	(int	[]	data)	

{	
int	i,	j,	temp;	
for	(i=1;	i<data.length;	i++)	
{	

temp	=	data[i];				
for	(j=i;	j>0	&&	temp<data[j-1];	j--)	

data[j]	=	data[j-1];	
data[j]	=	temp;	

}	
}	

	
	
	 	
Complexity	of	Insertion	Sort	

The	outer	for	 loop	runs	for	N-1	number	of	times.	When	the	array	 is	already	sorted	 in	reverse	
order	 then	 there	will	be	maximum	number	of	 comparisons	 (N-1).	 In	 first	 iteration	number	of	
comparisons	 will	 be	 1,	 in	 the	 second	 iteration	 it	 will	 be	 2,	 up	 to	 N-1,so	 total	 number	 of	
comparisons	will	be:	

1+2+3+4+………………….(N-1)	=	N*(N-1)/2.	

Therefore	complexity	of	insertion	sort	in	worst	case:	O(N2)		

Now	 if	 the	 array	 is	 already	 sorted	 then	 comparison	will	 be	 done	 but	 no	 interchange	will	 be	
taking	place	and	insertion	sort	will	run	in	linear	time	i.e.	complexity	of	insertion	sort	when	array	
already	sorted	is:	O(N).	This	is	the	best	case	for	insertion	sort.	

After	 the	 discussion	 of	 worst	 case	 and	 best	 case,	 we	 consider	 average	 case.	 On	 an	 average	
there	will	be	(N-1)/2	comparisons,	so	total	number	of	comparisons	will	be:	

1+2+3+4+……..+(N-1)/2	=	N(N-1)/4	

3	
	

Therefore	complexity	of	insertion	sort	in	average	case:	O(N2)	

Sort	the	following	set	of	data	items	:	54	,	26	,	93	,	17	,	77	,	31	,	44	,	55	

Steps	 Elements	in	array	 Remarks	
1	 54	 26	 93	 17	 77	 31	 44	 55	 A[0]	is	at	proper	position	
2	 26	 54	 93	 17	 77	 31	 44	 55	 A[0]	and	A[1]	are	sorted	
3	 26	 54	 93	 17	 77	 31	 44	 55	 A[0]	,A[1]	and	A[2]	are	sorted	
4	 17	 26	 54	 93	 77	 31	 44	 55	 A[0]]	through	A[3]	are	sorted	
5	 17	 26	 54	 77	 93	 31	 44	 55	 A[0]	through	A[4]	are	sorted	
6	 17	 26	 31	 54	 77	 93	 44	 55	 A[0]	through	A[5]	are	sorted	
7	 17	 26	 31	 44	 54	 77	 93	 55	 A[0]	through	A[6]	are	sorted	
8	 17	 26	 31	 44	 54	 77	 93	 55	 A[0]	through	A[7]	are	sorted		
Advantage:

An advantage of using insertion sort is that it sorts the array only when it is really
necessary. If the array is already in order, no substantial moves are performed; only the
variable tmp is initialized, and the value stored in it is moved back to the same position.
The algorithm recognizes that part of the array is already sorted and stops execution
accordingly.

Disadvantages:

(i) The fact that elements may already be in their proper positions is overlooked.
(ii) If an item is being inserted, all elements greater than the one being inserted have to

be moved.

2. Selection	Sort	
The	 idea	 of	 algorithm	 is	 quite	 simple.	 Array	 is	 imaginary	 divided	 into	 two	 parts-	 sorted	 and	
unsorted	one.	At	the	beginning,	sorted	part	is	empty,	while	unsorted	one	contains	whole	array.	
At	every	step,	algorithm	finds	minimal	element	in	the	unsorted	part	and	adds	it	to	the	end	of	
the	sorted	one.	When	unsorted	part	becomes	empty,	algorithm	stops.	
The	pseudocode	for	Selection	sort	is:	
Selection_sort (int data[]) 	
for i = 0 to data.length-2

select the smallest element among data[i], ..., data[data.length-1];
swap it with data[i];

	
	
	 	

4	
	

Selection	Sort	Implementation:	
void	selectionsort(int	[]	data)	
{	

int	i,	j,	least,	temp;	
for	(i=0;	i<data.length-1;	i++)	
{	

for	(j=i+1,	least=i;	j<data.length;	j++)	
if(data[j]	<	(data[least]))	

least	=	j;																																						
if(i	!=	least)	
{	

swap(data,	least,	i);	
}	

}	
}	

	
	
Complexity	of	Selection	Sort	

The	for	loop	runs	N-1	times	in	the	function	selection	sort.	For	every	minimum	selected	for	the	
array	or	segment	of	array	 just	one	swapping	operation	 is	performed.	This	 is	because	 it	 is	not	
placed	 inner	 for	 loop.	The	 function	min	requires	N-1	comparisons	during	 first	 iteration	of	 the	
for	loop,	N-2	in	the	second	iteration	and	so	on.	Thus	total	number	of	comparisons:	

N-1+N-2+……+3+2+1	=	N(N-1)/2	

Thus	complexity	of	 the	selection	sort	 is	O(N2).	 If	we	consider	array	 in	sorted	or	reverse	order	
then	 this	 does	 not	 affect	 number	 of	 comparisons	 in	 the	 function	 min.	 	 Thus	 number	 of	
comparisons	in	selection	sort	is	independent	of	the	original	order	of	the	elements	in	the	array.	
Moreover,	the	complexity	of	bubble	sort	and	selection	sort	is	same	but	selection	sort	executes	
faster	than	bubble	sort.	This	is	because	of	less	number	of	swapping	operations.	

5	
	

3. Bubble	Sort	

The	 bubble	 sort	 is	 the	 easiest	 and	 frequently	 used	 sorting	 algorithm	 among	 all	 the	 sorting	
algorithms.	The	algorithm	has	got	its	name	as	after	every	pass,	the	largest	element	bubbles	up	
and	move	to	end	of	the	array.	The	logic	for	bubble	sort	is	as	follows.	

1. Start	comparing	a[0]	to	a[1]	
2. If	a[0]>a[1]	then	swap	numbers.	
3. Compare	a[1]	to	a[2]	and	repeat	till	you	compare	last	pair	
4. This	is	referred	to	as	one	pass	and	at	the	end	of	first	pass	largest	number	is	at	last	
5. Repeat	this	comparison	again	starting	from	a[0]	but	this	time	going	till	second	last	pair	

only.	
Pseudocode	of	Bubble	sort	algorithm:	
bubblesort(data[]) 	
for i = 0 to data.length-2

for j = data.length-1 downto i+1 	
swap elements in positions j and j-1 if they are out of order;

The	Java	Implementation	for	bubble	sort:	
void	bubblesort(int	[]	data)	
{ 	

for (int i = 0; i < data.length-1; i++) 	
for (int j = data.length-1; j > i; --j) 	

if (((Comparable)data[j]).compareTo(data[j-1]) < 0) 	

 swap(data, j, j-1);
}

Complexity	of	Bubble	Sort	

For	any	array	of	N	elements	there	are	N-1	passes	(outer	for	loop)	and	in	each	pass	there	are	N-1	
comparisons.	Therefore	total	number	of	comparisons	are	(N-1)*(N-1	=	N2+2N+1.	This	is	of	the	
order	O(N2).	This	complexity	is	in	general	not	fixed.	This	is	because	number	of	comparisons	may	
differ	if	the	input	array	is	already	sorted	or	sorted	in	reverse	order.		

6	
	

Efficient	Sorting	Algorithms:	
The	O(n2)	limit	for	a	sorting	method	is	much	too	large	and	must	be	broken	to	improve	efficiency	
and	decrease	 run	 time.	The	problem	 is	 that	 the	 time	 required	 for	ordering	an	array	by	 three	
sorting	algorithms	(insertion,	selection,	bubble)	usually	grows	faster	than	the	size	of	the	array.	
In	fact,	it	is	customarily	a	quadratic	function	of	that	size.	For	that	we	use	Heap	sort,	Quick	Sort,	
Merge	Sort,	Radix	Sort	and	Shell	Sort.	
Heap	Sort		
Selection	 sort	 makes	 O(n2)	 comparisons	 and	 is	 very	 inefficient,	 especially	 for	 large	 n.	 But	 it	
moves	relatively	few	moves.	If	the	comparison	part	of	the	algorithm	is	improved,	the	end	result	
can	be	promising.	
Heap	 sort	 was	 invented	 by	 John	Williams	 and	 uses	 the	 approach	 inherent	 to	 selection	 sort.	
Selection	sort	finds	among	the	n	elements	the	one	that	precedes	all	other	n-1	elements,	then	
the	 least	element	among	those	n-1	 items,	and	so	 forth,	until	 the	array	 is	sorted.	To	have	the	
array	in	ascending	order,	heap	sort	puts	the	largest	element	at	the	end	of	the	array,	then	the	
second	largest	in	front	of	it,	and	so	on.	Heap	sort	starts	from	the	end	of	the	array	by	finding	the	
largest	elements,	whereas	selection	sort	starts	from	the	beginning	using	the	smallest	element.	
The	final	order	in	both	cases	is	indeed	the	same.	
A	heap	is	a	binary	tree	with	the	following	two	properties.	

• The	value	of	each	node	is	not	less	than	the	values	stored	in	each	of	its	children.	
• The	 tree	 is	 perfectly	 balanced	 and	 the	 leaves	 in	 the	 last	 level	 are	 all	 in	 the	 leftmost	

positions.	
A	 tree	has	 the	heap	property	 if	 it	 satisfies	condition	1.	Both	conditions	are	useful	 for	sorting,	
although	this	is	not	immediately	apparent	for	the	second	condition.	The	goal	is	to	use	only	the	
array	being	sorted	without	using	additional	storage	for	the	array	elements;	by	condition	2,	all	
elements	 are	 located	 in	 consecutive	 positions	 in	 the	 array	 starting	 from	 position	 0,	 with	 no	
unusual	position	 inside	the	array.	 In	other	words,	condition	2	reflects	 the	packing	of	an	array	
with	no	gaps.	
Elements	in	a	heap	are	not	perfectly	ordered.	It	is	known	only	that	the	largest	element	is	in	the	
root	node	and	that,	for	each	other	node,	all	its	descendants	are	not	greater	than	the	element	in	
this	node.	Heap	sort	thus	starts	from	the	heap,	puts	the	largest	element	at	the	end	of	the	array,	
and	restores	the	heap	that	now	has	one	less	element.	From	the	new	heap,	the	largest	element	
is	removed	and	put	in	its	final	position	and	then	the	heap	property	is	restored	for	the	remaining	
elements.	Thus,	 in	each	round,	one	element	of	the	array	ends	up	in	 its	final	position,	and	the	
heap	becomes	smaller	by	this	one	element.	The	process	ends	with	exhausting	all	elements	from	
the	heap.	
	 	

7	
	

Pseudocode for Heap Sort
heapsort (data []) 	

transform data into a heap; 	
for i = data.length-1downto2

swap the root with the element in position i;
restore the heap property for the tree data[0],...,data[i-1];

Array into heap transformation

	

8	
	

	

	 	 	 	 	 	 Fig:	Heap	Sort	

Complexity	of	Heapsort	

Complexity	of	function	heapify	is	O(log2N).	This	is	because	total	running	time	of	heapify	depend	
upon	sub	tree	rooted	at	one	of	the	children	at	index	I	and	setting	the	property	of	heap	among	
parent	i,	left	and	right	of	I	(constant	time	O(1).	The	number	of	nodes	in	the	children's	sub	tree	
can	at	most	be	2	N/3.	Thus	total	running	time	T(N)	can	be	denoted	as:	

T(N)	=		T(2N/3)+O(1)	

9	
	

Solution	of	the	above	is	O(log2N).	

The	Buildheap	function	takes	O(n).	Function	Heapsort	used	Buildheap	and	heapify	function.	A	
call	to	buildheap	function	takes	O(N)	time	and	there	are	N-1	calls	to	heapify	that	takes	O(log2N)	
time.	Therefore	running	time	of	Heapsort	is	O(NlogN).	

Quick	Sort		

The	quick	sort	divides	the	original	array	into	two	subarrays,	the	first	of	which	contains	elements	
less	 than	 or	 equal	 to	 a	 chosen	 key	 called	 pivot	 or	 bound.	 The	 second	 subarray	 includes	
elements	equal	to	or	greater	than	the	bound.	The	two	subarrays	can	be	sorted	separately	but	
before	this	 is	done,	the	partition	process	is	repeated	for	both	subarrays.	As	a	result,	two	new	
bounds	 are	 chosen,	 one	 for	 each	 subarray.	 The	 four	 subarrays	 are	 created	 because	 each	
subarray	obtained	in	first	phase	is	now	divided	into	two	segments.	This	process	of	partitioning	
is	carried	down	until	there	are	only	one	cell	arrays	that	do	not	need	to	be	sorted	at	all.	

To	partition	an	array,	two	operations	have	to	be	performed.	As	bound	has	to	be	found	and	the	
array	has	 to	be	scanned	 to	place	 the	elements	 in	 the	proper	 subarrays.	However,	 choosing	a	
good	bound	is	not	a	trivial	task.	The	problem	is	that	the	subarrays	should	be	approximately	the	
same	length.	If	an	array	contains	the	numbers	1	through	100	(in	any	order)	and	2	is	chosen	as	a	
bound,	then	an	imbalance	results.	The	first	subarray	contains	only	1	number	after	portioning,	
whereas	the	second	has	99	numbers.	
	

	 	

10	
	

Quick	sort	is	recursive	in	nature	because	it	is	applied	to	both	subarrays	of	the	array	at	each	level	
of	partitioning.	The	technique	is	summarized	in	the	following	pseudo	code:	

	
algo	quicksort	(a[],	lb,ub)	
{	
	 if(lb	<	ub)	
	 {	
	 	 loc	=	partition(a,	lb,	ub);	
	 	 quicksort(a,	lb,	loc-1);	
	 	 quicksort(a,	loc+1,	ub);	
	 }	
}	
	
algo	partition(a[],	lb,ub)	
{	
	 pivot	=	a[lb];	
	 start	=	lb;	end	=	ub;	
	 while(start	<	end)	
	 {	
	 	 while(a[start]	<=	pivot	&&	start	<	end)	
	 	 {	
	 	 	 start	=	start	+	1;	

}	
	 	 while(a[end]	>	pivot)	
	 	 {	
	 	 	 end	=	end	–	1;	
	 	 }	
	 	 if(start	<	end)	
	 	 {	
	 	 	 swap(a[start],	a[end]);	
	 	 }	

}	
a[lb]	=	a[end];	
a[end]	=	pivot;	
return	end;	

}	
	
	 	

11	
	

	Merge	sort		
The	problem	with	quick	sort	is	that	its	complexity	in	the	worst	case	is	O(n2)	because	it	is	difficult	
to	control	the	partitioning	process.	Different	methods	of	choosing	a	bound	attempt	to	make	the	
behavior	of	this	process	fairly	regular;	however,	there	is	no	guarantee	that	portioning	results	in	
arrays	 of	 approximately	 the	 same	 size.	 Another	 strategy	 is	 to	make	 portioning	 as	 simple	 as	
possible	 and	 concentrate	 on	merging	 the	 two	 sorted	 arrays.	 This	 strategy	 is	 characteristic	 of	
merge	 sort.	 It	was	one	of	 the	 first	 sorting	algorithms	used	on	a	 computer	was	developed	by	
John	von	Neumann.	
The	 key	 process	 in	 merge	 sort	 is	 merging	 sorted	 halves	 of	 an	 array	 into	 one	 sorted	 array.	
However,	 these	halves	have	 to	be	sorted	 first,	which	 is	accomplished	by	merging	 the	already	
sorted	halves	of	 these	halves.	 The	process	of	dividing	arrays	 into	 two	halves	 stops	when	 the	
array	has	fewer	than	two	elements.	The	algorithm	is	recursive	in	nature	and	can	be	summarized	
in	the	following	pseudocode:	
algo	mergesort(data,	first,	last)	
{	

if	(first<last)	
{	

mid	=	(first+last)/2;	
mergesort(data,	first,	mid);	
mergesort(data,	mid+1,	last);	
merge(data,	first,	last);	

}	
}	
The	array	[1	8	6	4	10	5	3	2	22]	sorted	by	merge	sort	as	follows:	
	

	
	

12	
	

Radix	Sort	

Radix	sort	is	a	popular	way	of	sorting	used	in	everyday	life.	To	sort	library	cards,	we	may	create	as	many	
piles	of	cards	as	letters	in	the	alphabet,	each	pile	containing	authors	whose	names	start	with	the	same	
letter.	Then,	each	pile	is	sorted	separately	using	the	same	method;	namely	piles	are	created	according	to	
the	second	letter	of	the	authors’	name.	This	process	continues	until	the	number	of	times	the	piles	are	
divided	into	smaller	piles	equals	the	number	of	letters	of	the	longer	name.	

When	sorting	 integers,	10	piles	numbered	0	 through	9	are	 created,	and	 initially,	 integers	are	put	 in	a	
given	pile	according	to	their	rightmost	digit	so	that	93	is	put	in	pile	3.	Then	piles	are	combined	and	the	
process	 is	 repeated,	 this	 time	with	 the	 second	 rightmost	digit;	 in	 this	 case,	93	ends	up	on	pile	9.	 The	
process	ends	after	the	leftmost	digit	of	the	longest	number	is	processed.	
Pseudocode:	
algo	Radixsort(a[],	n)	
{	
	 maxdata	=	getMax(a[],	n);	
	 for(exp=	1;	maxdata/exp	>	0;	exp=	exp*10);	
	 	 countsort(a[],	n,	exp);	
}	
	
algo	countsort(a[],	n,	exp)	
{	
	 initialize	count[0….9}	with	0s;	
	 for(i=	n-1;	i>	0;	i--)	
	 {	
	 	 output[count{a[i]/	exp)	%	10]	=	a[i];	
	 }	
}	
	
	
	
	
	

13	
	

	
	
To	better	understand	the	radix	sorting	we	sort	the	following	number.	
001,	234,	456	,	654,	697,	874,	243,	385,	902,	023	

B0	 B1	 B2	 B3	 B4	 B5	 B6	 B7	 B8	 B9	

	 001	 902	 243	 234	 385	 456	 697	 	 	
	 	 	 023	 654	 	 	 	 	 	
	 	 	 	 874	 	 	 	 	 	

Pass	1,	placing	number	in	bucket	on	the	basis	of	unit	digit	
B0	 B1	 B2	 B3	 B4	 B5	 B6	 B7	 B8	 B9	

	 001	 023	 234	 243	 654	 	 874	 385	 697	
	 902	 	 	 	 456	 	 	 	 	

14	
	

Pass	2,	placing	number	in	bucket	on	the	basis	of	10th	digit	
B0	 B1	 B2	 B3	 B4	 B5	 B6	 B7	 B8	 B9	

001	 	 234	 385	 456	 	 654	 	 874	 902	
023	 	 243	 	 	 	 697	 	 	 	

	
Pass	3,	placing	number	in	bucket	on	the	basis	of	100th	digit	
	
Complexity	 of	 Radix	 Sort:	 The	 complexity	 of	 radix	 sort	 depends	 upon	 number	 of	 elements	 (N)	 and	
number	of	digits	in	the	maximum	element	of	the	array	(say	M).	It	is	clear	that	number	of	passes	will	be	
equal	to	M.	As	outer	loop	runs	for	M	times	and	inner	loop	runs	for	N	times,	the	running	time	of	the	radix	
sort	can	be	approximated	to	O(N*M).	Now	in	worst	case	if	M=N	then	running	time	will	be	O(N2)	and	in	
case	M	=	log10N,	then	running	time	will	be	O(Nlog10N).	
	
	
	

	

	

