
1	
	

Unit	5:	Binary	Tree	
Trees	
Linked	list	usually	provide	greater	flexibility	than	array,	but	they	are	linear	structures	and	it	is	difficult	to	
use	them	to	organize	a	hierarchical	representation	of	objects.	To	overcome	these	limitations,	we	create	
a	new	data	type	called	a	tree	that	consists	of	nodes	and	arcs.	A	tree	can	be	defined	recursively	as	the	
following:	

1. An	empty	structure	is	an	empty	tree.	
2. If	 t1,……tk	 are	 disjointed	 trees,	 then	 the	 structure	 whose	 root	 has	 	 its	 children	 the	 roots	 of	

t1,,………	tk	is	also	a	tree.	
3. Only	structures	generated	by	rules	1	and	2	are	trees.	

Key	Terminologies	
Root:		A	tree	contains	a	unique	first	node	which	is	shown	at	the	top	of	the	tree	structure.	This	
node	is	called	root	of	the	tree.	
Leaf	Nodes:	The	nodes	which	do	not	have	children	are	called	leaf	nodes.	
Interior	Nodes:	The	nodes	which	have	children	nodes	are	called	interior	nodes.	
Siblings:	If	two	or	more	nodes	have	same	parent,	then	these	nodes	are	called	siblings	to	each	
other.	
Ancestor:	A	node	is	called	ancestor	of	another	node	if	either	it	is	the	parent	of	that	node	or	it	is	
the	parent	of	some	other	ancestor	of	that	node.	
Descendents:			A	node	is	called	Descendents	of	another	node	if	it	is	the	child	of	that	node	or	the	
child	of	some	other	descendents	of	that	node.	
Depth	 of	 tree:	 The	 length	 of	 the	 longest	 path	 from	 root	 to	 any	 other	 node	 is	 known	 as	 the	
depth	of	the	tree.	Path	is	the	number	of	edges	from	root	to	any	node.	
Binary	Tree	
A	binary	tree	is	type	of	tree	with	finite	number	of	elements	and	is	divided	into	three	main	parts.	
The	 first	part	 is	called	root	of	 the	 tree	and	other	 two	parts	are	 itself	binary	 tree	which	exists	
towards	left	and	right	of	the	tree.	Each	of	the	elements	in	the	binary	tree	is	considered	a	node	
and	a	node	will	have	three	piece	of	information:	data,	two	references		
Some	information	of	binary	tree	

• The	binary	tree	starts	at	root	and	grows	downward.	
• The	topmost	node	is	called	the	root.	The	root	will	not	have	parents.	All	other	nodes	can	

be	reached	from	it	by	following	edges	or	links.			
• The	link	between	two	nodes	is	termed	as	edge	or	arc.	
• If	X	is	the	root	of	the	tree	and	L	and	R	are	its	left	child/	and	right	child	respectively	then	

X	is	the	father	of	both	L	and	R.	L	and	R	are	called	siblings	or	brother	
• A	node	with	no	left	or	right	child	is	termed	as	leaf	node.	It	is	also	called	terminal	node.	
• An	internal	node	or	inner	node	is	any	node	of	a	tree	that	has	child	nodes	and	is	thus	not	

a	leaf	node.	
• A	path	is	sequence	of	edges	from	some	node	to	another	node	with	more	than	one	edge.	
• A	path	ending	in	a	leaf	is	known	as	branch.	
• Going	from	root	of	the	tree	to	any	of	the	leaf	node	is	termed	as	descending	the	tree.	
• Going	from	any	leaf	of	the	tree	towards	root	of	the	tree	is	termed	as	climbing	the	tree.	
• The	 root	 has	 level	 0	 and	 level	 of	 any	 other	 node	 is	 one	 more	 than	 the	 level	 of	 its	

parents.	

2	
	

• The	height	of	the	binary	tree	is	one	more	than	the	number	of	levels.	Another	definition	
of	height	is	the	number	of	nodes	in	a	branch	of	tree.	

• The	depth	of	the	binary	tree	is	the	maximum	level	number.	
• Number	of	sons	for	a	node	is	considered	as	degree	of	that	node.	
• Two	 binary	 trees	 are	 said	 to	 be	 copies	 when	 they	 have	 the	 identical	 structures	 and	

identical	nodes	at	all	levels	of	tree.	
• Two	binary	trees	are	said	to	be	similar	when	they	have	the	identical	structures	only.	

Strictly	Binary	Tree	
It	is	a	binary	tree	with	non-empty	right	and	left	sub	trees.	In	other	words,	it	is	binary	tree	with	
every	node	N	has	either	0	or	2	tree.	The	strictly	binary	tree	is	also	known	as	extended	2	Tree	or	
simply	2	–tree.	Sometimes	nodes	with	2	children's	are	known	as	internal	nodes	and	nodes	with	
0	children	are	known	as	external	nodes.	
Complete	Binary	Tree	
It	is	a	special	type	of	strictly	binary	tree	where	all	the	leaves	of	the	tree	reside	at	the	same	level.	
Using	the	depth	we	always	say	a	complete	binary	tree	of	depth	d	where	all	 leaves	with	be	at	
level	d	
Binary	Search	Tree		
The	application	of	binary	tree	is	searching	and	sorting.	By	enforcing	certain	rules	on	the	values	
of	the	elements	stored	in	a	binary	tree,	it	could	be	used	to	search	and	sort.		
Binary	search	tree	is	a	tree	in	which	value	of	each	node	in	the	tree	is	greater	than	the	value	of	
node	in	its	left	(if	exists)	and	it	is	less	than	the	value	in	its	right	child	(if	it	exists).	
As	name	suggests,	binary	search	tree	(BST)	is	used	for	searching	purpose.	For	every	node	N	in	
the	BST,	the	following	property	will	be	true.	

• The	data	at	left	node	will	be	smaller	than	data	at	node	N	
• The	data	at	right	node	will	be	larger	than	data	at	node	N	

	
	
	
	
	
	
	
Figure:	Binary	Search	Tree	
	
Implementing	Binary	Trees	
Binary	 trees	 can	be	 implemented	 in	at	 least	 two	ways:	as	arrays	and	as	 linked	 structures.	To	
implement	 a	 tree	 as	 an	 array,	 a	 node	 is	 declared	 as	 an	 object	 with	 information	 filed	 two	
“reference”	fields.	
Array	Implementation	of	Binary	Tree	
The	sequential	representation	of	binary	tree	uses	array	for	storing	the	data	for	each	node.	This	 is	very	
simple.	If	any	parent	node	is	stored	at	index	I	then	its	left	child	will	be	stored	at	2*I+1	and	right	child	will	
be	stored	at	2*I+2.	The	root	of	the	tree	is	stored	at	first	index	of	the	array	(index	0).	
The	array	representation	of	above	BST	is	as	shown	below:	
	

12	

9	

14	

18	

21	1	

3	
	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
12	 9	 18	 1	 	 14	 21	 	 	 	
	
It	is	clear	that	the	most	of	the	locations	in	array	are	empty.	This	causes	wastage	of	memory	space.	That	
is,	the	array	representation	of	binary	tree	is	quite	inefficient.	In	general	for	a	binary	tree	with	height	H,	
the	size	of	the	array	will	be	approximately	be	2H.	
Besides	this,	locations	of	children	must	be	known	to	insert	a	new	node	and	these	locations	may	need	to	
be	 located	 sequentially.	 After	 deleting	 a	 node	 from	 a	 tree,	 a	 hole	 in	 the	 array	 would	 have	 to	 be	
eliminated;	this	may	lead	to	populating	the	array	with	many	unused	cells.	
Linked	List	Representation	of	Binary	Tree	
The	linked	list	representation	is	the	most	popular,	efficient	and	most	frequently	used	representation	of	
binary	tree.	In	the	linked	list	representation	every	node	is	represented	by	data,	a	reference	to	left	child	
and	a	reference	to	right	child.	The	node	of	binary	tree	can	be	created	as	follows:	
class	BTNode{					
					public	BTNode	left;	
					public	int	data;	
					public	BTNode	right;	
					public	BTNode()	{	
									left	=	null;	
									data	=	0;	
									right	=	null;	
					}	
					public	BTNode(int	n)	{	
									left	=	null;	
										data	=	n;	
									right	=	null;	
					}	
}	
Searching	a	Binary	Search	Tree	
An	 algorithm	 for	 locating	 an	 element	 in	 binary	 search	 tree	 is	 quite	 straightforward.	 For	 every	 node,	
compare	the	key	to	be	located	with	the	value	stored	in	the	node	root.		If	the	key	is	equal	to	value	then	
stop.	 If	 the	 key	 is	 less	 than	 the	 value,	 go	 to	 the	 left	 subtree	and	 try	 again.	 If	 key	 is	 greater	 than	 that	
value,	try	the	right	subtree.	If	it	is	same,	obviously	the	search	can	be	discontinued.	
A	method	for	searching	a	Binary	Search	Tree	
Node	BST(int	el)	
{	
	 Node	p	=	root;	
	 while(p.el	!=	el)	
	 {	
	 	 if(el	<	p.el)	
	 	 	 p	=	p.left;	
	 	 else		
	 	 	 p	=	p.right;	 	
	 	 if(p	==	null)	

return	null;	
}		
return	p;	

}	

4	
	

Tree	Traversal	
	
Tree	traversal	is	the	process	of	visiting	each	node	in	the	tree	exactly	once.	Traversal	may	be	interpreted	
as	putting	all	nodes	on	one	line	or	linearizing	a	tree.	
The	definition	of	traversal	specifies	only	one	condition-visiting	each	node	only	one	time	but	it	does	not	
specify	 the	 order	 in	 which	 the	 nodes	 are	 visited.	 For	 a	 tree	 with	 n	 nodes,	 there	 are	 n!	 different	
traversals.	 Most	 of	 the	 traversal	 has	 no	 use,	 so	 we	 restrict	 our	 attention	 two	 classes	 only,	 namely,	
breadth	first	search	and	depth	first	search	traversal.	
	
Breadth	First	Traversal		
Breadth	first	search	traversal	is	visiting	each	node	from	the	lowest	(or	highest)	level	and	moving	down	
(or	up)	level	by	level,	visiting	nodes	on	each	level	from	left	to	right	(or	from	right	to	left).	There	are	thus	
four	possibilities,	and	one	such	possibility,	a	top	–	down,	left	to	right,	breadth	first	traversal	of	the	tree.	
Implementation	of	this	kind	of	traversal	is	straightforward	when	a	queue	is	used.	
Consider	a	top-down,	left	to	right,	breadth	first	traversal.	After	a	node	is	visited,	its	children,	if	any,	are	
placed	at	the	end	of	the	queue,	and	the	node	at	the	beginning	of	the	queue	is	visited.	The	restriction	is	
that	all	nodes	on	level	n	must	be	visited	before	visiting	any	node	on	level	n+1	is	accomplished.		
	
Void	breadthfirstTraversal()	
{	
	 Node	p	=	root;	
	 Queue	queue	=	new	Queue<Node>();	
	 if(p	!=	null)	
	 {	
	 	 queue.enqueue(p);	
	 	 while(!queue.isempty())	

{	
	 	 	 p	=	queue.dequeue();	
	 	 	 visit(p);	
	 	 	 if(p.left	!=	null)	
	 	 	 	 queue.enqueue(p.left);	
	 	 	 if(p.right	!=	null)	
	 	 	 	 queue.enqueue(p.right);	
	 	 }	
	 }	
}	
For	example,	consider	the	following	tree:	
	
	
	
	
	
	
	
	
	
The	Breadth	first	search	traversal	will	result	in	the	sequence:	13	8	25	7	9	20	31	29	
	

13	

8	

9	

25	

7	 20	 31	

29	

5	
	

Depth	First	Traversal	
Depth	 first	 traversal	 proceeds	 as	 far	 as	 possible	 to	 the	 left	 (or	 right),	 then	 backs	 up	 until	 the	 first	
crossroad,	 goes	 one	 step	 to	 the	 right	 (or	 left),	 and	 again	 as	 far	 as	 possible	 to	 the	 left	 (or	 right).	We	
repeat	 this	 process	 until	 all	 nodes	 are	 visited.	 There	 are	 some	 variations	 of	 the	 depth	 first	 search	
traversal.	
There	are	three	tasks	of	interest	in	this	types	of	traversal:	
V	–	Visiting	a	node	
L	–	Traversing	the	left	subtree.	
R	–	Traversing	the	right	subtree.	
	
Preorder	Traversal(VLR):	

To	traverse	a	nonempty	binary	tree	in	preorder,	we	perform	the	following	three	operations:	

• Visit	the	root	
• Traverse	the	left	tree	in	preorder	
• Traverse	the	right	sub	tree	in	preorder	

void	preorder(Node	p)	
{	
	 if(p	!=	null)	
	 {	
	 	 visit	(p);	
	 	 preorder(p.leftChild);	
	 	 preorder(p.rightChild);	
	 }	
}	

	

Inorder	Traversal(LVR):	

To	traverse	a	nonempty	binary	tree	in	inorder,	we	perform	the	following	three	operations:	

• Traverse	the	left	sub	tree	in	inorder	
• Visit	the	root	
• Traverse	the	right	sub	tree	inorder	

void	inorder(Node	p)	
{	

if(p	!=	null)	
{	
	 inorder(p.leftChild);	
	 visit	(p);	
	 inorder(p.rightChild);	
}	

}	

6	
	

Postorder	Traversal(LRV)	 	

To	traverse	a	non-empty	tree	in	Postorder,	we	perform	the	following	

• Traverse	the	left	sub	tree	in	postoder	
• Traverse	the	right	sub	tree	in	postorder		
• Visit	the	root	

	
void	postorder(Node	p)	
{	

if(p	!=	null)	
{	
	 postorder(p.leftChild);	
	 postorder(p.rightChild);	
	 visit	(p);	
}	

}	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	preorder	traversal	will	print:	13	8	7	9	25	20	31	29	
The	inorder	traversal	will	print:		7	8	9	13	20	25	29	31	
The	postorder	traversal	will	print:	7	9	8	20	29	31	25	30	
	
Insertion		
Searching	a	binary	 tree	does	not	modify	 the	 tree.	 It	 scans	 the	 tree	 in	a	predetermined	way	 to	access	
some	or	all	of	the	keys	in	the	tree	but	the	tree	itself	remains	undisturbed.	There	are	certain	operations	
that	 always	 make	 some	 change	 on	 the	 tree,	 such	 as	 adding	 nodes,	 deleting	 nodes,	 and	 modifying	
elements,	merging	trees	and	balancing	trees	to	reduce	their	height.	
To	insert	a	new	node	with	key	el,	a	tree	node	with	a	dead	end	has	to	be	reached,	and	new	node	has	to	
be	attached	to	it.	Such	a	tree	node	is	found	using	the	same	technique	as	used	in	tree	searching.	
The	key	el	 is	 compared	 to	 the	key	of	 the	node	currently	being	examined	during	 tree	scan.	 If	el	 is	 less	
than	that	key,	the	left	child	(if	any)	of	p	is	tried;	otherwise	the	right	child	is	tested.	If	the	child	of	p	to	be	
tested	is	empty,	the	scanning	is	discontinued	and	the	new	node	becomes	this	child.	
	
	

13	

8	

9	

25	

7	 20	 31	

29	

7	
	

Insertion	Algorithm:		
If	root	is	NULL		

then	create	root	node	
	 	return		
	 If	root	exists		
	 then	compare	the	data	with	node.data		 	
	 while	until		 	
	 insertion	position	is	located		
	 If	data	is	greater	than	node.data	
	 	goto	right	subtree		
	 else	goto	left	subtree		
	 endwhile		
	 insert	data		
end	If		
Method	to	insert	element	in	BST:	
void	insert(int	el)	
{	
	

Node	p	=	root,	prev	=	null;	
while(p	!=	null)	 	

	 {	
	 	 	 prev	=	p;	
	 	 	 if(el.compareTo(p.el)	<	0)	
	 	 	 	 p	=	p.left;	
	 	 	 else	
	 	 	 	 p	=	p.right;	
	 }	
	 if(root	==	null)	

root	=	new	Node(el);	
	 else	if(el.compareTo(prev.el)	<	0)	
	 	 prev.left	=	new	Node(el);	
	 else	
	 	 prev.right	=	new	Node(el);	
}	
	

	 	

8	
	

Deletion	
Deleting	 a	 node	 is	 another	 operation	 to	 maintain	 a	 binary	 Search	 tree.	 The	 level	 of	 complexity	 in	
performing	the	operation	depends	on	the	position	of	the	node	to	be	deleted	in	the	tree.	It	is	by	far	more	
difficult	 to	 delete	 a	 node	 having	 two	 subtrees	 than	 to	 delete	 a	 leaf;	 the	 complexity	 of	 the	 deletion	
algorithm	 is	proportional	 to	 the	number	of	children	 the	node	has.	There	are	 three	cases	of	deleting	a	
node	from	the	binary	search	tree.	
1. The	node	is	a	leaf;	it	has	no	children:	This	is	the	easiest	case	to	deal	with.	The	appropriate	reference	

of	 its	 parent	 is	 set	 to	 null	 and	 space	 occupied	 the	 deleted	 node	 is	 later	 claimed	 by	 the	 garbage	
collector.	
	

													 	
	
2. The	node	has	one	 child:	 This	 case	 is	 not	 complicated.	 The	parent’s	 child	 reference	 to	 the	node	 is	

reset	to	refer	to	the	node’s	child.	In	this	way,	the	node’s	children	are	lifted	up	be	one	level	
	

																	 	
	
	
	
3. The	node	has	two	children.	In	this	case,	no	one	step	option	can	be	performed	because	the	parent’s	

right	or	left	reference	cannot	refer	to	both	the	node’s	children	at	the	same	time.		
							There	are	two	solutions	to	this	problem:	
	
a) Deletion	by	merging	
This	 solution	makes	one	 tree	out	of	 the	 two	 subtrees	of	 the	node	and	 then	attaches	 it	 to	 the	node’s	
parent.	This	technique	is	called	deleting	by	merging.	By	nature	of	the	binary	search	trees,	every	key	of	
the	right	subtree	is	greater	than	every	key	of	the	left	subtree,	so	the	best	thing	to	do	is	to	find	in	left	tree			
The	node	with	the	greatest	key	and	make	it	a	parent	of	the	right	subtree.	Symmetrically,	the	node	with	
the	lowest	key	can	be	found	in	the	right	subtree	and	made	a	parent	of	the	left	subtree.	
The	 desired	 node	 is	 the	 rightmost	 node	 of	 the	 left	 subtree.	 It	 can	 be	 located	 by	 moving	 along	 this	
subtree	and	taking	right	reference	until	null	 is	encountered.	This	means	that	this	node	will	not	have	a	
right	child,	and	there	is	no	danger	of	violating	the	property	of	binary	search	trees	in	the	original	tree	by	
setting	that	right	most	node’s	right	reference	to	right	subtree.	
	 	

9	
	

Since	in	a	binary	search	tree	value	at	every	node	is	always	less	than	or	equal	to	the	values	in	right	
subtree	and	always	greater	than	to	the	values	in	left	subtree,	to	merge	a	right	subtree	into	a	left	subtree	
we	find	largest	value	in	left	subtree	and	make	it	a	parent	of	right	subtree	of	node	N.	
	

To delete node 25 by merging we will merge right subtree into left subtree. First we have to
find the node with largest key value (20) in left subtree. Now make the node 20 as a parent
of right subtree of node 25. Next set the link of parent node of 25 which is node 35 to point
to root of left subtree of 25.

10	
	

In order to merge left subtree into right subtree find the smallest value in right subtree and
make it a parent of left subtree. The smallest value in a right subtree will be the leftmost
node i.e. node with no left child. This can be located by moving down in right subtree
towards left until left child is NULL. This node is the immediate successor of the node to be
deleted in inorder traversal.

Similarly, node 25 can also be deleted by merging left subtree into right subtree and link
right subtree to the parent node of 25. This has been illustrated in figure 3.16.

11	
	

b) Deletion	by	Copying	
Another	solution,	called	deletion	by	copying,	was	proposed	by	Thomas	Hibbard	and	Donald	Knuth.	If	the	
node	has	two	children,	the	problem	can	be	reduced	to	one	of	two	simple	cases.	The	node	is	a	leaf	or	the	
node	 has	 only	 one	 nonempty	 child.	 This	 can	 be	 done	 by	 replacing	 the	 key	 being	 deleted	 with	 its	
immediate	 predecessor	 (or	 successor).	 As	 deletion	 by	merging,	 a	 key’s	 predecessor	 is	 the	 key	 in	 the	
rightmost	 node	 in	 the	 left	 subtree.	 First,	 the	 predecessor	 has	 to	 be	 located.	 This	 is	 done,	 again,	 by	
moving	as	far	to	the	left	by	first	reaching	the	root	of	the	node’s	left	subtree	and	then	moving	as	far	to	
the	right	as	possible.	Next,	the	key	of	the	located	node	replaces	the	key	to	be	deleted.	And	that	is	where	
one	of	two	simple	cases	comes	into	play.	If	the	rightmost	node	is	a	leaf,	the	first	case	applies;	however,	
if	 it	 has	 one	 child,	 the	 second	 case	 is	 relevant.	 In	 this	way,	 deletion	 by	 copying	 removes	 a	 key	 k1	 by	
overwriting	 it	 by	 another	 key	 k2	 and	 then	 removing	 the	 node	 that	 holds	 k2,	 whereas	 deletion	 by	
merging	consisted	of	removing	a	key	k1	along	with	the	node	that	holds	it.	
Deletion	by	copying	method	is	simple	and	better	than	the	deletion	by	merging	method.	Sometimes	
height	of	the	tree	increases	in	deletion	by	merging	resulting	in	unbalanced	tree.	But	in	Deletion	by	
Copying	method	height	of	the	tree	remains	balanced.	
In	deletion	by	copying	key	of	inorder	predecessor/successor	of	the	node	to	be	deleted	are	copied	at	the	
node’s	place.	First	we	find	inorder	predecessor/r	successor	of	the	node	as	discussed	in	previous	section.	
Than	copy	the	value	of	Inorder	predecessor/successor	at	the	place	of	key	value	of	the	node	and	then	
delete	the	inorder	predecessor/successor	
	

	
	
	
	 	

12	
	

Deleting 25 using Deletion by copying inorder predecessor

	

	

	

	

	

	

	

13	
	

Deleting node 25 using Deletion by copying inorder successor
	
	

	
	
	
Balancing	a	Tree	
There	 are	 two	 arguments	 that	 support	 the	 use	 of	 tree.	 The	 first	 one	 is	 tree	 is	 used	 to	 represent	 the	
hierarchical	 structure	of	 a	 certain	domain	and	 search	process	 is	much	 faster	 is	 using	 trees	 than	using	
linked	lists.		
The	second	argument,	however,	does	not	always	hold.	It	all	depends	on	what	the	tree	looks	like.	If	tree	
is	not	balanced	tree	it	is	more	or	less	similar	to	linked	list.	
A	binary	tree	is	height	balanced	tree	or	simply	balanced	tree	if	the	difference	in	height	of	both	subtrees	
of	any	node	in	the	tree	is	either	zero	or	one.	
Let	us	consider	the	following	table.	
Height	 Nodes	at	one	Level	 Nodes	at	All	Levels	
1	 20	=	1	 	1	=	21	-1			
2	 21	=	1	 3	=	22-1	
3	 22		=	4	 7	=	23-1	
4	 23	=	8	 15	=	24-1	
….	 	 	
11	 210	=	1024	 2027	=	211-1	
…	 	 	
14	 213	=	8192	 16383	=	214-1	
…	 	 	
H	 2h-1	 N	=	2h-1	
	
For	example,	 if	 10000	elements	are	 stored	 in	a	perfectly	balanced	 tree,	 then	 the	 tree	 is	of	height	 log	
10000	 =	 13.289	 =	 14.	 In	 practical	 terms,	 this	means	 that	 if	 10000	 elements	 are	 stored	 in	 a	 perfectly	
balanced	 tree,	 then	 at	 most	 14	 nodes	 have	 to	 be	 checked	 to	 locate	 a	 particular	 element.	 This	 is	 a	

14	
	

substantial	difference	compared	to	10000	tests	needed	in	a	linked	list	(in	the	worst	case).	Therefore,	it	is	
worth	the	effort	to	build	a	balanced	tree	or	modify	an	existing	tree	so	that	it	is	balanced.	
There	are	number	of	techniques	to	properly	balance	a	binary	tree.	Some	of	them	consist	of	constantly	
restructuring	the	tree	when	elements	arrive	and	 lead	to	an	unbalanced	tree.	Some	of	 them	consist	of	
reordering	the	data	themselves	and	then	building	a	tree.	
The	technique	is	based	on	binary	search	technique.	This	allows	for	using	the	following	simple	recursive	
implementation.	
void	balance	(data[]	int	first,	int	last){	
if(first<=last){	
int	middle	=	(first+last)/2;	
insert(data[middle]);	
balance(data,	first,	middle-1);	
balance(data,	middle+1,	last);	
}	
}	
Let	us	consider	the	following	example:	
Stream	of	data:	5	1	9	8	7	0	2	3	4	6	
Array	of	sorted	data:	0	1	2	3	4	5	6	7	8	9	
	
The	DSL	Algorithm	 	 	 	 	 	 	 	
The	 earlier	method	 is	 no	 efficient	 in	 that	 it	 requires	 an	 array	 and	needs	 array	 to	 be	 sorted.	 To	 avoid	
sorting,	 it	 required	 deconstructing	 the	 tree	 after	 placing	 elements	 in	 the	 array	 using	 the	 inorder	
traversal,	 and	 then	 reconstructing	 the	 tree,	which	 is	 inefficient	 except	 for	 relatively	 small	 tree.	 There	
are,	 however,	 algorithms	 that	 require	 little	 additional	 storage	 for	 intermediate	 variables	 and	 use	 no	
sorting	procedures.	 The	 very	 elegant	DSW	algorithm	was	devised	by	Colin	day	 and	 later	 improved	by	
block	Quentin	F,	Stout		
The	building	block	for	tree	transformation	 is	this	algorithm	is	the	rotation.	There	are	two	of	rotations,	
left	and	right,	which	are	symmetrical	to	each	other.	The	right	rotation	of	the	node	ch	about	 its	parent	
par	is	performed	according	to	the	following	algorithm:	
	
rotateRight(Gr,	Par,	Ch)	
if		Par	is	not	the	root	of	the	tree	
grandparent	Gr	of	child	Ch	becomes	Ch’s	parent	
right	subtree	of	Ch	becomes	left	subtree	of	Ch’s	parent	Par;	
node	Ch	acquires	Par	as	its	right	child;	
	
	
	
	
	
	
	
	
	
	
	
	
	

4	

1	

0	 2	

7	

5	
8	

3	 6	
9	

Gr	

Par	

Ch	

P	 Q	

R	

R	

Gr	

Par	

Ch	

P	

Q	

15	
	

Basically,	 the	 DSW	 algorithm	 transforms	 an	 arbitrary	 binary	 search	 tree	 into	 a	 linked	 list	 called	 a	
backbone	or	vine.	Then	this	elongated	tree	is	transformed	in	a	series	of	passes	into	a	perfectly	balanced	
tree	by	repeatedly	rotating	every	second	node	of	the	backbone	about	its	parent	
In	the	first	phase,	a	backbone	is	created	using	the	following	routine.	
	
CreateBackbone	(root,	n)	
tmp	=	root;	
while	(tmp!=null)	
if(tmp	has	a	left	child	
	 rotate	this	about	tmp;	
set	tmp	to	the	child	that	just	became	parent;	
else	set	tmp	to	its	right	child;	
	
	
															

	
	
	
	
In	the	best	case,	when	the	tree	is	already	a	backbone,	the	while	loop	is	executed	n	times	and	no	rotation	
is	performed.	In	worst	case,	when	the	root	does	not	have	a	right	child,	the	while	loop	is	executed	2n-1	
times	with	n-1	rotations	performed,	where	n	is	the	number	of	nodes	in	the	tree;	that	is,	the	run	time	of	
the	first	phase	is	O(n).	
In	the	second	phase,	the	backbone	is	transformed	into	a	tree,	but	this	time	the	tree	is	perfectly	balanced	
by	 having	 leaves	 only	 on	 two	 adjacent	 leaves.	 In	 each	 pass	 down	 the	 backbone,	 every	 second	 node	
down	to	a	certain	point	is	routed	about	its	parent.	The	first	pass	may	not	reach	the	end	of	the	backbone.	
It	 is	 used	 to	 account	 for	 the	 difference	 between	 the	 number	 n	 of	 nodes	 in	 the	 current	 tree	 and	 the	
number		2└log(n+1)┘-1	of	nodes	in	the	closest	complete	binary	tree.	
That	is,	the	overflowing	nodes	are	repeated	separately.	
	

16	
	

createPerfectTree(n)	
m	=	2└log(n+1)┘-1;	
make	n-m	rotations	starting	from	the	top	of	the	backbone;	
while(m>1)	
m	=	m/2;	
make	m	rotations	staring	from	the	top	of	the	backbone;	
		
To	compute	the	complexity	of	the	tree	building	phase,	observe	that	the	number	of	iterations	performed	
by	the	while	loop	equals.	
(2log(m+1)-1-1)+………………..+15+7+3+1	=			m	–log(m+1)	
	
	

	
	
	
	
The	number	of	rotations	can	now	be	given	by	the	formula	
n-m+(m-log	(m+1))	=	n-log(m+1)		=	n-└log(n+1┘	
	
that	 is,	 the	 number	 of	 rotations	 is	 O(n).	 Because	 creating	 a	 backbone	 also	 requires	 at	 most	 O(n)	
rotations,	the	cost	of	global	rebalancing	with	the	DSW	algorithm	is	optimal	in	terms	of	time	because	it	
grows	linearly	with	n	and	requires	a	very	small	and	fixed	amount	of	additional	storage	
	
	
	
	
	
	
	
	

17	
	

The	java	method	for	DSW	is	as	follows	
	
public	void	DSW(){	
									if(root!=null){	
									createBackBone();	
									createPerfectBST();	
									}									
					}	
					public	void	createBackBone(){	
									BSTNode	grandParent	=	null;	
									BSTNode	parent	=	root;	
									BSTNode	leftChild;	
									while(parent!=null){	
													leftChild	=	parent.left;	
													if(leftChild!=null){	
																	grandParent	=	rotateRight(grandParent,parent,leftChild);	
																parent	=	leftChild;	
													}	
													else{	
																	grandParent	=	parent;	
																	parent	=	parent.right;	
													}	
									}	
					}	
					public	BSTNode	rotateRight(BSTNode	grandParent,	BSTNode	parent,	BSTNode	leftChild){	
									if(grandParent!=null){	
													grandParent.right	=	leftChild;	
									}	
									else{	
													root	=	leftChild;	
									}	
									parent.left	=	leftChild.right;	
									leftChild.right	=	parent;	
									return	grandParent;	
}	
	private	void	createPerfectBST()	{	
int	n	=	0;	
for	(BSTNode	tmp	=	root;	null	!=	tmp;	tmp	=	tmp.right)	{	
n++;	
}	
int	m	=	greatestPowerOf2LessThanN(n	+	1)	-	1;	
makeRotations(n	-	m);	
while	(m	>	1)	{	
makeRotations(m	/=	2);	
}	
}	
private	int	greatestPowerOf2LessThanN(int	n)	{	
int	x	=	MSB(n);	

18	
	

return	(1	<<	x);	
}	
public	int	MSB(int	n)	{	
int	ndx	=	0;	
while	(1	<	n)	{	
n	=	(n	>>	1);	
ndx++;	
}	
return	ndx;	
}	
private	void	makeRotations(int	bound)	{	
BSTNode	grandParent	=	null;	
BSTNode	parent	=	root;	
BSTNode	child	=	root.right;	
for	(;	bound	>	0;	bound--)	{	
try	{	
if	(null	!=	child)	{	
rotateLeft(grandParent,	parent,	child);	
grandParent	=	child;	
parent	=	grandParent.right;	
child	=	parent.right;	
}		
else	{	
break;	
}	
}		
catch	(NullPointerException	convenient)	{	
break;	
}	
}	
}		
private	void	rotateLeft(BSTNode	grandParent,	BSTNode	parent,	BSTNode	rightChild)	{	
if	(null	!=	grandParent)	{	
grandParent.right	=	rightChild;	
}	else	{	
root	=	rightChild;	
}	
parent.right	=	rightChild.left;	
rightChild.left	=	parent;	
}	
	
	
	
	
	
	

19	
	

AVL	Trees	 	
The	AVL	tree	was	proposed	by	Adelson	Velskii	and	Landies.	An	AVL	tree	(originally	called	an	
admissible	tree)	is	one	in	which	the	height	of	the	left	and	right	subtrees	of	every	node	differ	by	at	most	
one.	The	definition	of	AVL	tree	is	same	as	definition	of	the	balanced	tree.	However,	the	concept	of	the	
AVL	 tree	always	 implicitly	 includes	 the	 techniques	 for	balancing	 the	 tree.	The	 technique	 for	balancing	
AVL	trees	does	not	guarantee	that	the	resulting	tree	is	perfectly	balanced.	
	
	
	
	
	
	
	
	
	

Figure:	AVL	Tree	
	
Numbers	in	the	nodes	indicate	the	balance	factors	that	are	difference	between	the	heights	of	the	right	
subtree	minus	the	height	of	the	left	subtree.	For	an	AVL	tree,	all	balance	factors	should	be	+1,	0	or	-1.	
	
The	definition	of	an	AVL	tree	 indicates	that	the	minimum	number	of	nodes	 in	a	tree	 is	determined	by	
the	recurrence	equation.	
AVLh	=	AVLh-1+AVLh-2+1	
	
	
	
	
	
	
	
	
	
Where	AVL0		=	0	and	AVL1	=	1	are	the	initial	conditions.	This	formula	leads	to	the	following	bounds	on	the	
height	h	of	an	AVL	tree	depending	on	the	number	of	nodes	n.	
Log(n+1)≤h≤1.44(n+2)-0.328	
Therefore,	h	is	bounded	by	O(logn);	the	worst	case	search	requires	O(logn)	comparisons.	For	a	perfectly	
balanced	binary	tree	of	the	same	height.	Therefore,	the	search	time	in	the	worst	case	in	an	AVL	tree	is	
44%	worse	 than	 in	 the	best	 tree	 configuration.	Empirical	 studies	 indicate	 that	 the	average	number	of	
searches	 is	 much	 closer	 to	 the	 best	 case	 than	 to	 the	 worst	 and	 is	 equal	 to	 logn+0.25	 for	 large	 n.	
Therefore,	AVL	trees	are	definitely	worth	studying.	
If	the	balance	factor	of	any	node	in	an	AVL	tree	becomes	less	than	-1	or	greater	than	1,	the	tree	has	to	
be	balanced.		
Deletion	may	be	more	time	consuming	than	insertion.	First,	we	can	apply	deleteBycopying	()	to	delete.	
This	technique	allows	us	to	reduce	the	problem	of	deleting	a	node	with	two	descendents	to	deleting	a	
node	with	at	most	one	descendents.	
After	a	node	has	been	deleted	from	the	tree,	balance	factor	are	updated	from	the	parent	of	the	deleted	
node	up	to	 the	root.	For	each	node	 in	 this	path	whose	balance	 factor	becomes	±2,	a	single	or	double	

+1	

-1	
-1	

0	 +1	 0	

0	

+1	

-1	
-1	

0	 +1	 0	

0	

20	
	

rotation	has	to	be	performed	to	restore	the	balance	of	the	tree.	Importantly,	the	rebalancing	does	not	
stop	 after	 the	 first	 node	 is	 found	 for	which	 the	 balance	 factor	would	 become	±2,	 as	 is	 the	 case	with	
insertion.	This	also	means	that	deletion	 leads	to	at	most	O(logn)	rotations,	because	 in	the	worst	case,	
every	node	on	the	path	from	the	deleted	node	to	the	root	may	require	rebalancing.	
	

	
	

	
	

	
	
	

21	
	

	
	
	
	

	

22	
	

Self-Adjusting	Trees	
The	main	concern	 in	balancing	 the	 tree	 is	 to	keep	 them	from	becoming	 lopsided	and	 ideally,	 to	allow	
leaves	 to	 occur	 only	 at	 one	 or	 two	 levels.	 Therefore,	 if	 a	 newly	 arriving	 element	 endangers	 the	 tree	
balance,	the	problem	is	immediately	rectified	by	restructuring	the	tree	locally	(AVL	tree)	or	re-creating	
the	 tree).	However,	we	may	question	whether	 such	a	 restructuring	 is	always	necessary.	Binary	search	
tree	 is	 used	 to	 insert,	 retrieve	 and	 delete	 elements	 quickly,	 and	 the	 speed	 of	 performing	 these	
operations	 is	 the	 issue,	but	not	the	shape	of	 the	tree.	Performance	can	be	 improved	by	balancing	the	
tree,	but	this,	is	not	the	only	method	that	can	be	used.	
Another	 approach	 begins	 with	 the	 observation	 that	 not	 all	 the	 elements	 are	 used	 with	 the	 same	
frequency.	For	example,	 if	an	element	on	the	10th	 level	of	 the	tree	 is	used	only	 infrequently,	 then	the	
execution	of	 the	 entire	 program	 is	 not	 greatly	 impaired	by	 accessing	 this	 level.	However,	 if	 the	 same	
element	is	constantly	being	accessed,	then	it	makes	a	big	difference	whether	it	is	on	the	tenth	level	or	
close	to	root.	Therefore,	the	strategy	in	self-	adjusting	tree	is	to	restructure	trees	by	moving	up	the	tree	
only	 those	 elements	 that	 are	 used	 more	 often,	 creating	 a	 kind	 of	 “priority	 tree”.	 The	 frequency	 of	
accessing	nodes	can	be	determined	in	a	variety	of	ways.	Each	node	can	have	a	counter	field	that	records	
the	number	of	 times	 the	element	has	been	used	 for	 any	operation.	 Then	 the	 tree	 can	be	 scanned	 to	
move	 the	most	 frequently	 accessed	elements	 towards	 the	 root.	 In	 a	 less	 sophisticated	approach,	 it	 is	
assumed	that	an	element	being	accessed	has	good	chance	of	being	accessed	again	soon.	Therefore,	it	is	
moved	up	 to	promoting	 elements	 that	 occasionally	 accessed,	 but	 the	overall	 tendency	 is	 to	move	up	
elements	with	a	higher	frequency	of	access,	and	for	the	most	part,	these	elements	will	populate	the	first	
few	levels	of	the	tree.	
	
Self-Restructuring	Trees	
A	strategy	proposed	by	Brain	Allen	and	Ian	Munro	and	by	James	Bitner	consists	of	two	possibilities:	

1. Single	rotation:	Rotate	a	child	about	 its	parent	 if	an	element	 in	a	child	 is	accessed,	unless	 it	 is	
the	root.	Figure(a).	

2. Moving	to	the	root:	Repeat	the	child	–parent	rotation	until	the	element	being	accessed	is	in	the	
root.	Figure(b).	

																							 	
	
Using	the	single	rotation	strategy,	 frequently	accessed	elements	are	eventually	moved	up	close	to	the	
root	so	that	later	accesses	are	faster	than	previous	ones.	In	the	move	to	the	root	strategy,	it	is	assumed	
that	the	element	being	accessed	has	a	high	probability	to	be	accessed	again,	so	it	percolates	right	away	
up	 to	 the	 root.	 These	 strategies,	 however,	 do	not	work	 very	well	 in	unfavorable	 situations,	when	 the	
binary	tree	 is	elongated.	 In	this	case,	the	shape	of	the	tree	 improves	slowly.	Nevertheless,	 it	has	been	
determined	that	the	cost	of	moving	a	node	to	the	root,	converges	to	the	cost	of	accessing	the	nodes	in	
an	 optimal	 tree	 times	 2log	 2;	 that	 is,	 it	 converges	 to	 (2ln2)logn.	 The	 result	 holds	 for	 any	 probability	
distribution.	 However,	 the	 average	 search	 time	when	 all	 requests	 are	 equally	 likely	 is,	 for	 the	 single	
rotation	technique,	equal	to	√	πn.	
	 	

23	
	

	
	
Splaying	
A	modification	 of	 the	move	 to	 the	 root	 is	 called	 splaying,	which	 applies	 single	 rotation	 in	 pairs	 in	 an	
order	 depending	 on	 the	 links	 between	 the	 child,	 parent,	 and	 grandparent.	 First,	 three	 cases	 are	
distinguished	 depending	 on	 the	 relationship	 between	 a	 node	 R	 being	 accessed	 and	 its	 parent	 Q	 and	
grandparent	P	(if	any)	nodes:	
Case	1:	Node	R’s	parent	is	the	root.	
Case	2:	Homogeneous	configuration:		Node	R	is	the	left	child	of	its	parent	Q,	and	Q	is	the	left	child	of	its	
parent	P	or	R	and	Q	are	both	right	children.	
Case	3:	Heterogeneous	configuration:	Node	R	is	the	right	child	of	its	parent	Q,	and	Q	is	the	left	child	of	
its	parent	P,	or	R	is	the	left	child	of	Q	and	Q	is	the	right	child	of	P.	
	
The	algorithm	to	move	to	a	node	R	being	accessed	to	the	toot	of	the	tree	is	as	follows:	
Spalying	(P,Q,R)	
while	R	is	not	the	root	
	 If	R’s	parent	is	the	root	
	 	 Perform	a	singular	splay,	rotate	R	about	its	parent.	
	 else	if	R	is	in	a	homogeneous	configuration	with	its	predecessor		
																										perform	a	homogeneous	splay,	first	rotate	Q	about	P		
	 												and	then	R	about	Q.	
	 else		
	 	 perform	a	heterogeneous	splay;	first	rotate	R	about	Q	
	 	 and	then	about	P	

24	
	

																						 	
	
Although	splaying	 is	a	combination	of	two	rotations	except	when	next	to	the	root,	these	rotations	are	
not	always	used	in	the	bottom	up	fashion	as	in	the	self-adjusting	trees.	For	the	homogeneous	case	(left	
–left	or	right	–right),	first	the	parent	and	the	grandparent	of	the	node	being	accessed	are	rotated,	and	
only	afterward	are	the	node	and	its	parent	rotated.	This	has	the	effect	of	moving	an	element	to	the	root	
and	flattening	the	tree,	which	has	a	positive	impact	on	the	accesses	to	be	made.	
The	 number	 of	 rotations	 may	 seem	 excessive,	 and	 it	 certainly	 would	 be	 if	 an	 accessed	 element	
happened	to	be	in	a	leaf	every	time.	In	case	of	a	leaf,	the	access	time	is	usually	O(logn),	except	for	some	
initial	accesses	when	the	tree	is	not	balanced.	But	accessing	elements	close	to	root	may	make	the	tree	
unbalanced.	For	example,	if	the	left	child	of	the	root	is	always	accessed,	then	eventually,	the	tree	would	
also	be	elongated,	this	time	extending	to	the	right.	
	
Heaps	
A	particular	kind	of	binary	tree,	called	a	heap,	has	the	following	two	properties.	

1. The	value	of	each	node	is	greater	than	or	equal	to	the	values	of	stored	in	each	of	its	children.	
2. The	tree	is	perfectly	balanced,	and	the	leaves	in	the	last	level	are	all	in	the	leftmost	positions.	

To	be	exact,	these	two	properties	define	a	max	heap.	If	“greater”	in	the	first	properties	is	replaced	with	
“less”	 then	 the	definition	 specifies	 a	min	 heap.	 This	means	 that	 the	 root	 of	 a	max	heap	 contains	 the	
largest	element,	whereas	the	root	of	a	min	heap	contains	the	smallest.	A	tree	has	the	heap	property	if	
each	nonleaf	has	 the	 first	 property.	Due	 to	 the	 second	 condition,	 the	number	of	 leaves	 in	 the	 tree	 is	
O(logn).	
Interestingly,	 heaps	 can	 be	 implemented	 by	 arrays.	 The	 elements	 are	 placed	 at	 sequential	 locations	
representing	 the	nodes	 from	 top	 to	bottom	and	 in	each	 level	 from	 left	 to	 right.	 The	 second	property	

25	
	

reflects	the	fact	that	the	array	is	packed,	with	no	gaps.	Now,	a	heap	can	be	defined	as	an	array	heap	of	
length	n	in	which:	
Heap[i]≥heap[2.i+1],	for	0≤i<(n-1)/2	
And	heap[i]	≥heap[2.i+1],	for	0≤i<(n-2)/2.	
	
The	array	[2	8	6	1	10	15	3	12	11]	seen	as	a	tree.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Elements	in	a	heap	are	not	perfectly	ordered.	We	know	only	that	the	largest	element	is	in	the	root	node	
and	that,	for	each	node,	all	its	descendents	are	less	than	or	equal	to	that	node.	But	the	relation	between	
siblings	 (brothers)	nodes	or	 to	continue	the	kinship	 terminology,	between	uncle	and	nephew	nodes	 is	
not	determined.	The	order	of	the	elements	obeys	a	linear	line	of	descent,	disregarding	lateral	lines.	

	
	
Heaps	as	Priority	Queues	
A	 heap	 is	 an	 excellent	way	 to	 implement	 a	 priority	 queue.	 Priority	 queue	 can	 be	 implemented	 using	
linked	list	for	which	the	complexity	was	expressed	in	O(n).	For	large	n	,	this	may	be	too	inefficient.	On	
the	other	hand,	 a	heap	 is	 a	perfectly	balanced	 tree,	hence,	 reaching	a	 leaf	 requires	O(logn)	 searches.	
This	 efficiency	 is	 promising.	 Therefore,	 heaps	 can	 be	 used	 to	 implement	 priority	 queue.	 To	 this	 end,	
however,	 two	 procedures	 have	 to	 be	 implemented	 to	 enqueue	 and	 dequeue	 elements	 on	 a	 priority	
queue.	
To	enqueue	an	element,	the	element	is	added	at	the	end	of	the	heap	as	the	last	leaf.	Restoring	the	heap	
priority	in	the	case	of	enqueuing	is	achieved	by	moving	from	the	leaf	towards	the	root.	
The	algorithm	for	enqueuing	is	as	follows:	
heapEnque	(el)	
put	el	at	the	end	of	heap;	
where	el	is	not	in	the	root	and	el	>parent	(el)	
swap	el	with	its	parents;	

2	

8	
6	

1	 10	 15	
3	

12	 11	

26	
	

	
	

Fig:	Enqueueing	an	element	to	a	heap	
	
Dequeuing	an	element	from	the	heap	consists	of	removing	the	root	element	from	the	heap,	because	by	
the	heap	property	it	is	the	element	with	the	greatest	priority.	Then	the	last	leaf	is	put	in	its	place	and	the	
heap	property	almost	certainly	has	to	be	restored,	this	time	by	moving	from	the	root	down	the	tree.	
	
The	algorithm	for	Dequeuing	is	as	follows:	
heapDequeue()	
extract	the	element	from	the	root;	
put	the	element	from	the	last	leaf	in	its	place;	
remove	the	last	leaf;	
p	=	the	root;	
where	p	is	not	a	leaf	and	p	<	any	of	its	children	
	 swap	p	with	the	larger	child;	
	

	

27	
	

Algorithm to move the root element down a tree:

void moveDown(Object[] data, int first, int last)
{

int largest = 2*first + 1; 	
while (largest <= last)
{

 if (largest < last && data[largest]).compareTo(data[largest+1]) < 0)
largest++;

if (((Comparable)data[first]).compareTo(data[largest]) < 0)
{

swap (data, first, largest);
 first = largest; 	

largest = 2*first + 1;
}
else

largest = last + 1;
 }
}

	 	

28	
	

Organizing	Arrays	as	Heaps	

Heaps	 can	be	 implemented	as	 arrays,	 and	 in	 that	 sense,	 each	heap	 is	 an	 array,	 but	 all	 arrays	 are	not	
heaps.	In	some	situations,	however,	most	notably	in	heap	sort,	we	need	to	convert	an	array	into	a	heap.	
There	are	several	ways	to	do	this,	but	the	simplest	way	is	to	start	with	an	empty	heap	and	sequentially	
include	elements	into	a	growing	heap.	This	is	a	top	down	method	and	it	was	proposed	by	John	Williams;	
it	extends	the	heap	by	enqueuing	new	element	in	the	heap.	

(i) A	top	down	method:	

Figure	6.57	contains	a	complete	example	of	the	top-down	method.	First,	the	number	2	is	enqueued	in	
the	initially	empty	heap	(6.57a).	Next,	8	is	enqueued	by	putting	it	at	the	end	of	the	current	heap	(6.57b)	
and	then	swapping	with	its	parent	(6.57c).	Enqueuing	the	third	and	fourth	elements,	6	(6.57d)	and	then	
1	(6.57e),	necessitates	no	swaps.	Enqueuing	the	fifth	element,	10,	amounts	to	putting	it	at	the	end	of	
the	heap	(6.57f),	then	swapping	it	with	its	parent,	2	(6.57g),	and	then	with	its	new	parent,	8	(6.57h)	so	
that	eventually	10	percolates	up	to	the	root	of	the	heap.	All	remaining	steps	can	be	traced	by	the	reader	
in	Figure	6.57.		

	

29	
	

Figure:	6.57	(A	Top-Down	Method)	

To	check	the	complexity	of	the	algorithm,	observe	that	in	the	worst	case,	when	a	newly	added	element	
has	to	be	moved	up	to	the	root	of	the	tree,	log	k	exchanges	are	made	in	a	heap	of	k	nodes.	Therefore,	if	
n	elements	are	enqueued,	then	in	the	worst	case		

	Log	1+log	2+log	3……………….+log	n	=	O(nlogn)	

Exchanges	are	made	during	execution	of	the	algorithm	and	the	same	number	of	comparisons.	

(ii) A	Bottom-Up	Method	(Floyd	Algorithm):	

In	another	algorithm,	developed	by	Robert	Floyd,	a	heap	is	built	bottom-up.	In	this	approach,	small	
heaps	are	formed	and	repetitively	merged	into	larger	heaps.	
Algorithm:		
FloydAlgorithm (data[]) 	

for i = index of the last nonleaf down to 0
restore the heap property for the tree whose root is data[i] by calling
moveDown(data, i, n-1);

	

We	start	from	the	last	nonleaf	node,	which	is	data[n/2-1],	n	being	the	array	size.	If	data[n/2-1]	is	less	
than	one	of	its	children,	it	is	swapped	with	the	larger	child.	In	the	tree	in	Figure	6.58a,	this	is	the	case	for	
data	[3]	=	1	and	data	[7]	=	12.	After	exchanging	the	elements,	a	new	tree	is	created,	shown	in	Figure	
6.58b.	Next	the	element	data[n/2-2]	=	data	[2]	=	6	is	considered.	Because	it	is	smaller	than	its	child	data	
[5]	=	15,	it	is	swapped	with	that	child	and	the	tree	is	transformed	to	that	in	Figure	6.58c.	Now	data[n/2-
3]	=	data	[1]	=	8	is	considered.	Because	it	is	smaller	than	one	of	its	children,	which	is	data	[3]	=	12,	an	
interchange	occurs,	leading	to	the	tree	in	Figure	6.58d.	But	now	it	can	be	noticed	that	the	order	
established	in	the	subtree	whose	root	was	12	(Figure	6.58c)	has	been	somewhat	disturbed	because	8	is	
smaller	than	its	new	child	11.	This	simply	means	that	it	does	not	suffice	to	compare	a	node’s	value	with	
its	children’s,	but	a	similar	comparison	needs	to	be	done	with	grandchildren’s,	great-grandchildren’s,	
and	so	on	until	the	node	finds	its	proper	position.	Taking	this	into	consideration,	the	next	swap	is	made,	
after	which	the	tree	in	Figure	6.58e	is	created.	Only	now	is	the	element	data[n/2-4]	=	data	[0]	=	2	com-	
pared	with	its	children,	which	leads	to	two	swaps	(Figure	6.58f).		

		 	

30	
	

Figure	below	contains	an	example	of	transforming	the	array	data	[]	=	[2	8	6	1	10	1531211]	into	a	heap:	

	

	

	

	

	 	

31	
	

The	following	program	creates	heap	from	Array	using	bottom	approach	

public	class	HeapArray	{	
								public	static	void	buildHeap(int	[]a){	
								int	n=a.length-1;	
								for(int	i=n/2-1;i>=0;i--){	
												maxheap(a,i,n);	
								}	
				}					
				public	static	void	maxheap(int[]	a,	int	i,int	n){		
								int	left=2*i+1;	
								int	right=2*i+2;	
								int	largest;	
								if(left	<=	n	&&	a[left]	>	a[i]){	
																					largest=left;	
								}	
								else	
																					largest=i;									
								if(right	<=	n	&&	a[right]	>	a[largest]){	
												largest=right;	
								}	
								if(largest!=i){	
												exchange(a,i,largest);	
												maxheap(a,	largest,n);	
								}	
				}					
				public	static	void	exchange(int	a[],int	i,	int	j){	
								int	t=a[i];	
								a[i]=a[j];	
								a[j]=t;		
								}	
				public	static	void	main(String[]	args)	{	
								int	arr[]	=	{1,6,7,8,2,3};									
							buildHeap(arr);									
								for(int	i=0;i<arr.length;i++)	
								System.out.print(arr[i]+	"	");	
				}				
}	
	
Similarly,	 we	 can	 also	 create	 heap	 from	 top	 down	 approach.	 The	 procedure	 is	 almost	 same.	 The	
following	program	illustrates	this	technique	very	clearly.	
	
	 	

32	
	

Polish	Notation	and	Expression	Tree	

One	of	the	applications	of	binary	trees	 is	an	unambiguous	representation	of	arithmetical,	relational	or	
logical	 expressions.	 In	 the	 early	 1920s,	 a	 Polish	 logician,	 Jan	 Lukasiewich	 invented	 a	 special	 notation,	
called	Polish	notation,	results	in	less	readable	formulas	than	the	parenthesized	originals	and	it	was	not	
widely	 used.	 It	was	 proved	useful	 after	 the	 emergence	of	 computers,	 especially	 for	writing	 compilers	
and	interpreters.	

To	maintain	 readability	 and	 prevent	 from	 ambiguity	 of	 formulas,	 extra	 symbols	 such	 as	 parentheses	
have	to	be	used.	However,	if	avoiding	ambiguity	is	the	only	goal,	then	these	symbols	can	be	omitted	at	
the	cost	of	changing	the	order	of	symbols	used	in	the	formulas.	This	is	exactly	what	the	compiler	does.	It	
rejects	 everything	 that	 is	 not	 essential	 to	 retrieve	 the	 proper	 meaning	 of	 formulas,	 rejecting	 it	 as	
“syntactic	sugar”.	

To	understand	how	notation	works,	let	us	take	following	example:	

2-3.4+5	

The	 result	depends	on	 the	order	 in	which	 the	operations	are	performed.	 If	we	multiply	 first	and	 then	
subtract	 and	 add,	 the	 result	 is	 -5	 as	 expected.	 If	 subtraction	 is	 done	 first,	 then	 addition	 and	
multiplication	as	in:	

(2-3).(4+5)	

Then	 the	 result	 of	 evaluation	 is	 -15.	 If	 we	 see	 the	 first	 expression,	 then	 we	 know	 in	 what	 order	 to	
evaluate	 it.	But	 the	computer	does	not	know	that,	 in	 such	a	case,	multiplication	has	precedence	over	
addition	and	subtraction.	If	we	want	to	override	the	precedence,	then	parentheses	are	needed.	

Compilers	need	to	generate	assembly	code	in	which	one	operation	is	executed	at	a	time	and	the	result	is	
retained	 for	other	operations.	Therefore,	all	expressions	have	 to	be	broken	down	unambiguously	 into	
separate	operations	and	put	into	their	proper	order.	That	is	where	the	Polish	notation	is	useful.	It	allows	
us	to	create	an	expression	an	expression	tree,	which	imposes	an	order	on	execution	of	operations.	For	
example,	 the	 first	 expression	 2-3.4+5	 which	 is	 same	 as	 2-(3.4)+5	 is	 represented	 by	 the	 following	
expression	tree.	

								 	

33	
	

There	 is	 no	 ambiguity	 involved	 in	 this	 tree	 representation.	 The	 final	 result	 can	 be	 computed	 only	 if	
intermediate	results	as	calculated	first.	
It	 can	 be	 noted	 that	 tree	 do	 not	 use	 parentheses	 and	 yet	 no	 ambiguity	 arises.	We	 can	maintain	 this	
parentheses	free	notation	if	the	expression	tree	is	linearized.	The	three	traversal	methods	relevant	here	
are	preorder,	inorder	and	postorder.	
Because	 of	 the	 importance	 of	 these	 different	 conventions,	 special	 terminology	 is	 used.	 Preorder	
traversal	 generates	 prefix	 notation,	 inorder	 traversal	 generates	 infix	 notation	 and	 postorder	 traversal	
generates	postfix	notation.	
	
Operations	on	Expression	Trees	
	
Binary	 trees	can	be	created	 in	 two	different	ways:	 top	down	or	bottom	up.	 In	 the	 implementation	of	
insertion,	 the	 first	 approach	 was	 used.	 But	 here	 we	 second	 approach	 by	 creating	 expression	 trees	
bottom	up	while	scanning	infix	expressions	from	left	to	right.	
The	most	 important	part	of	this	construction	 is	retaining	the	same	precedence	of	operations	as	 in	the	
expression	being	scanned.	 If	parentheses	are	not	allowed,	 the	task	 is	simple,	as	parentheses	allow	for	
many	 levels	of	nesting.	Therefore,	an	algorithm	should	be	powerful	enough	to	process	any	number	of	
nesting	levels	in	an	expression.	A	natural	approach	is	a	recursive	implementation.	
	

