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Classification 

3.1  Introduction 

Classification is the process where a model or classifier is constructed to predict categorical labels 

of unknown data. Classification problems aim to identify the characteristics that indicate the group 

to which each case belongs. This pattern can be used both to understand the existing data and to 

predict how new instances will behave. 

Definition: Classification is the task of learning a target function f that maps each attribute set X to 

one of the predefined class label Y. 

For example, classification of loan applicants as “safe” or “risky” for the bank, whether a customer 

with a given profile will buy a new computer or not, whether a patient is a good candidate for a 

surgical procedure or not etc. 

Data classification is a two-step process: 

I. Model construction

In the first step, a classifier is built describing a predetermined set of data classes or concepts. This 

is the learning step (or training phase), where a classification algorithm builds the classifier by 

analyzing or “learning from” a training set made up of database tuples and their associated class 

labels. 

II. Model usage

In the second step, the model is used for classification. Test data are used to estimate the accuracy 

of the classification rules. If the accuracy is considered acceptable, the rules can be applied to the 

classification of new data tuples. 

Training set 
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Example: 

 

Issues Regarding Classification 

i. Preparing the Data for Classification 

Data cleaning: This refers to the preprocessing of data in order to remove or reduce noise (by 

applying smoothing techniques, for example) and the treatment of missing values (e.g., by 

replacing a missing value with the most commonly occurring value for that attribute, or with the 

most probable value based on statistics). 

Relevance analysis: Many of the attributes in the data may be redundant. Correlation analysis can 

be used to identify whether any two given attributes are statistically related. For example, a strong 

correlation between attributes A1 and A2 would suggest that one of the two could be removed from 

further analysis. 

Data transformation and reduction: The data may be transformed by normalization, particularly 

when neural networks or methods involving distance measurements are used in the learning step. 

Normalization involves scaling all values for a given attribute so that they fall within a small 

specified range, such as -1.0 to 1.0, or 0.0 to 1.0. Data can also be reduced by applying methods 

such as binning, histogram analysis, and clustering. 

ii. Evaluating Classification Methods  

Classification methods can be compared and evaluated according to the following criteria:  

Accuracy: The accuracy of a classifier refers to the ability of a given classifier to correctly predict 

the class label of new or previously unseen data (i.e., tuples without class label information).  
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Speed: This refers to the computational costs involved in generating and using the given classifier 

or predictor.  

Robustness: This is the ability of the classifier or predictor to make correct predictions given noisy 

data or data with missing values.  

Scalability: This refers to the ability to construct the classifier or predictor efficiently given large 

amounts of data. 

Types of Classifiers: 

 Decision Tree classifier  

 Rule Based Classifier  

 Nearest Neighbor Classifier 

 Bayesian Classifier  

 Artificial Neural Network (ANN) Classifier 

3.2    Decision Tree Classifier 

Decision tree is a collection of decision nodes, connected by branches, extending downward from 

the root node until terminating in leaf nodes. Beginning at the root node, which by convention is 

placed at the top of the decision tree diagram, attributes are tested at the decision nodes, with each 

possible outcome resulting in a branch. Each branch then leads either to another decision node or 

to a terminating leaf node. 

Figure 1. Decision tree for the credit risk data. 
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The problem of constructing a decision tree can be expressed recursively. First, select an attribute 

to place at the root node and make one branch for each possible value. This splits up the example 

set into subsets, one for every value of the attribute. Now the process can be repeated recursively 

for each branch, using only those instances that actually reach the branch. If at any time all 

instances at a node have the same classification, stop developing that part of the tree. 

“How are decision trees used for classification?” Given a tuple, X, for which the associated class 

label is unknown, the attribute values of the tuple are tested against the decision tree. A path is 

traced from the root to a leaf node, which holds the class prediction for that tuple (X). Decision 

trees can easily be converted to classification rules as well. 

The only (and the most important) thing left to decide is how to determine which attribute to split 

on, given a set of examples with different classes. Consider the weather data in the table 1. There 

are four possibilities for root node (Outlook, Temperature, Humidity and Wind). Which is the best 

choice? The number of yes and no classes are shown at the leaves. Any leaf with only one class—

yes or no—will not have to be split further, and the recursive process down that branch will 

terminate. Because we seek small trees, we would like this to happen as soon as possible. If we 

had a measure of the purity of each node, we could choose the attribute that produces the purest 

child nodes. 

Attribute Selection Measures 

An attribute selection measure is an approach for selecting the splitting criterion that “best” 

separates a given data partition, D, of class-labeled training tuples into individual classes. If we 

were to split D into smaller partitions according to the outcomes of the splitting criterion, ideally 

each partition would be pure (i.e. all of the tuples that fall into a given partition would belong to 

the same class). Conceptually, the “best” splitting criterion is the one that most closely results in 

such a scenario. Attribute selection measure is also known as splitting rules because they determine 

how the tuples at a given nodes are to be split. 

There are three popular attribute selection measures—information gain, gain ratio, and gini index. 

a. Information Gain 

Information gain is used by ID3 algorithm. The attribute with the highest information gain is 

chosen as the splitting attribute for node N. This attribute minimizes the information needed to 
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classify the tuples in the resulting partitions and reflects the least randomness or “impurity” in 

these partitions. 

The expected information needed to classify a tuple in D is given by 

𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑃𝑖 𝑙𝑜𝑔2(𝑃𝑖)

𝑚

𝑖=1

 

Where Pi= probability that an arbitrary tuple D belongs to class Ci 

At this point, the information we have is based solely on the proportions of tuples of each class. 

Info(D) is also known as the entropy of D. 

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values, 

{a1, a2, . . . , aV} as observed from the training data. Attribute A can be used to split D into v 

partitions or subsets, {D1, D2, . . . , Dv}, where Dj contains those tuples in D that have outcome aj 

of A. How much more information would we still need (after the partitioning) in order to arrive at 

an exact classification? This amount is measured by 

𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

𝐷
× 𝐼𝑛𝑓𝑜(𝐷𝑗)

𝑣

𝑗=1

 

|Dj|/D acts as the weight of the jth partition. InfoA(D) is the expected information required to classify 

a tuple from D based on the partitioning by A. 

Finally the information gain of any attribute A can be calculated as: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝐴(𝐷) 

In other words, Gain(A) tells us how much would be gained by branching on A. The attribute A 

with the highest information gain, (Gain(A)), is chosen as the splitting attribute at node N. This is 

equivalent to saying that we want to partition on the attribute A that would do the “best 

classification,” so that the amount of information still required to finish classifying the tuples is 

minimal (i.e., minimum InfoA(D)). 

Example 1: Decision tree using information gain.  

Table below presents a training set, D, of class-labeled tuples randomly selected from the weather 

dataset consisting of weather information of last 14 days and whether a match was played on that 

day or not. Now using the decision tree we need to predict whether the game will happen or not in 

the day with testing attributes. 
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Day Outlook Temperature Humidity Wind Play_Tennis? 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 

Table 1. Weather data 

In this example, the class label attribute, play_tennis, has two distinct values (yes, no); therefore, 

there are two distinct classes (i.e., m = 2). Let class C1 correspond to yes and class C2 correspond 

to no. There are nine tuples of class yes and five tuples of class no. A (root) node N is created for 

the tuples in D. To find the splitting criterion for these tuples, we must compute the information 

gain of each attribute. 

We first compute the expected information needed to classify a tuple in D as, 

𝐼𝑛𝑓𝑜(𝐷) = − [
9

14
𝑙𝑜𝑔2 (

9

14
) +

5

14
𝑙𝑜𝑔2 (

5

14
)] = 0.940 𝑏𝑖𝑡𝑠 

Next, we need to compute the expected information requirement for each attribute. Let’s start with 

the attribute Outlook. We need to look at the distribution of yes and no tuples for each category of 

age. For the Outlook category sunny, there are two yes tuples and three no tuples (total five). For 

the category Overcast, there are four yes tuples and zero no tuples (total four). For the category 

Rain, there are three yes tuples and two no tuples (total five). 

So, the expected information needed to classify a tuple in D if the tuples are partitioned according 

to Outlook is 
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𝐼𝑛𝑓𝑜𝑂𝑢𝑡𝑙𝑜𝑜𝑘(𝐷) =
5

14
× [−

2

5
𝑙𝑜𝑔2 (

2

5
) −

3

5
𝑙𝑜𝑔2 (

3

5
)] +

4

14
× [−

4

4
𝑙𝑜𝑔2 (

4

4
) −

0

4
𝑙𝑜𝑔2 (

0

4
)] 

+
5

14
× [−

3

5
𝑙𝑜𝑔2 (

3

5
) −

2

5
𝑙𝑜𝑔2 (

2

5
)] = 0.694 𝑏𝑖𝑡𝑠 

Hence, the gain in information from such a partitioning would be 

𝐺𝑎𝑖𝑛(𝑂𝑢𝑡𝑙𝑜𝑜𝑘) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝑂𝑢𝑡𝑙𝑜𝑜𝑘(𝐷) = 0.940 − 0.694 = 0.246 𝑏𝑖𝑡𝑠 

Similarly, 

𝐼𝑛𝑓𝑜𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦(𝐷) =
7

14
× [−

3

7
𝑙𝑜𝑔2 (

3

7
) −

4

7
𝑙𝑜𝑔2 (

4

7
)] +

7

14
× [−

6

7
𝑙𝑜𝑔2 (

6

7
) −

1

7
𝑙𝑜𝑔2 (

1

7
)]

= 0.787 𝑏𝑖𝑡𝑠 

Hence, the gain in information from such a partitioning would be 

𝐺𝑎𝑖𝑛(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦(𝐷) = 0.940 − 0.787 = 0.153 𝑏𝑖𝑡𝑠 

In similar way we can compute, 

Gain(Temperature)= 0.031 bits 

Gain(Wind)=0.048 bits 

Because Outlook has the highest information gain (0.246) among the attributes, it is selected as 

the splitting attribute. Node N is labeled with Outlook, and branches are grown for each of the 

attribute’s values. The tuples are then partitioned accordingly. So, initially our decision tree will 

look like: 
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Notice that the tuples falling into the partition for Outlook = overcast all belong to the same class. 

Because they all belong to class “yes,” a leaf should therefore be created at the end of this branch 

and labeled with “yes”. 

As we can see, for Outlook being sunny, there are 2 yes and 3 no. So we have to further split the 

decision tree. To do so, we need to compute information gain of attributes for the sub table on the 

left using same methods as above. 

So,     𝐼𝑛𝑓𝑜(𝐷) = − [
2

5
𝑙𝑜𝑔2 (

2

5
) +

3

5
𝑙𝑜𝑔2 (

3

5
)] = 0.970 𝑏𝑖𝑡𝑠 

So, the expected information needed to classify a tuple in D if the tuples are partitioned according 

to Outlook is 

𝐼𝑛𝑓𝑜𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝐷) =
2

5
× [−

0

2
𝑙𝑜𝑔2 (

0

2
) −

2

2
𝑙𝑜𝑔2 (

2

2
)] +

2

5
× [−

1

2
𝑙𝑜𝑔2 (

1

2
) −

1

2
𝑙𝑜𝑔2 (

1

2
)] 

+
1

5
× [−

1

1
𝑙𝑜𝑔2 (

1

1
) −

0

1
𝑙𝑜𝑔2 (

0

1
)] = 0.400 𝑏𝑖𝑡𝑠 

𝐺𝑎𝑖𝑛(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝐷) = 0.970 − 0.400 = 0.570 𝑏𝑖𝑡𝑠 

In similar way we can compute, 

Gain(Humidity)=0.970 bits 

Gain(Wind)=0.020 bits 

So, we select Humidity as splitting criteria. In similar way, we can compute information gain for 

all attributes in right sub table. In the right sub table, Wind will be our splitting criteria. So our 

final decision tree will be as follows: 
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b. Gain Ratio 

The information gain measure is biased toward tests with many outcomes. That is, it prefers to 

select attributes having a large number of values. C4.5, a successor of ID3, uses an extension to 

information gain known as gain ratio, which attempts to overcome this bias. It applies a kind of 

normalization to information gain using a “split information” value defined analogously with 

Info(D) as 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − ∑
|𝐷𝑗|

|𝐷|
× 𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
)

𝑣

𝑗=1

 

This value represents the potential information generated by splitting the training data set, D, into 

v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome, 

it considers the number of tuples having that outcome with respect to the total number of tuples in 

D. It differs from information gain, which measures the information with respect to classification 

that is acquired based on the same partitioning. The gain ratio is defined as 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷)
 

The attribute with the maximum gain ratio is selected as the splitting attribute. 

For example 
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A test on Temperature splits the data of Table 1 into three partitions, namely cool, mild, and hot, 

containing four, six, and four tuples, respectively. To compute the gain ratio of Temperature, we 

first compute 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − [
4

14
𝑙𝑜𝑔2 (

4

14
) +

6

14
𝑙𝑜𝑔2 (

6

14
) +

4

14
𝑙𝑜𝑔2 (

4

14
)] = 0.926 𝑏𝑖𝑡𝑠 

From above example, we have Gain(Temperature)=0.031 bits 

Therefore, GainRatio(Temperature)=0.031/0.926=0.033 bits. 

c. Gini Index 

The Gini index is used in CART. Using the notation described above, the Gini index measures the 

impurity of D, a data partition or set of training tuples, as  

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑖
2

𝑚

𝑖=1

 

Where, pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. The 

sum is computed over m classes. 

The Gini index considers a binary split for each attribute. Let’s first consider the case where A is 

a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occurring in D. To determine 

the best binary split on A, we examine all of the possible subsets that can be formed using known 

values of A. 

When considering a binary split, we compute a weighted sum of the impurity of each resulting 

partition. For example, if a binary split on A partitions D into D1 and D2, the gini index of D given 

that partitioning is 

𝐺𝑖𝑛𝑖𝐴(𝐷) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) 

For each attribute, each of the possible binary splits is considered. The reduction in impurity that 

would be incurred by a binary split on a discrete- or continuous-valued attribute A is 

Gini(A) = Gini(D)-GiniA(D). 

-------------Refer Text Book------------------ 

Tree Pruning 

When a decision tree is built, many of the branches will reflect anomalies in the training data due 

to noise or outliers. Tree pruning methods address this problem of overfitting the data. Such 
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methods typically use statistical measures to remove the least reliable branches. The pruned trees 

are smaller and less complex. The dual goal of pruning is reduced complexity of the final classifier 

as well as better predictive accuracy by the reduction of overfitting and removal of sections of a 

classifier that may be based on noisy data. A tree that is too large risks overfitting the training data 

and poorly generalizing to new samples. 

A small tree might not capture important structural information about the sample space. But it is 

hard to tell when a tree algorithm should stop because it is impossible to tell if the addition of a 

single extra node will dramatically decrease error. A common strategy is to grow the tree until 

each node contains a small number of instances then use pruning to remove nodes that do not 

provide additional information. 

Pruning should reduce the size of a learning tree without reducing predictive accuracy as measured 

by a test set or using cross-validation. 

Approaches: 

i Pre pruning 

In the pre pruning approach, a tree is “pruned” by halting its construction early (e.g. by deciding 

not to further split or partition the subset of training tuples at a given node). Upon halting, the node 

becomes a leaf. The leaf may hold the most frequent class among the subset tuples or the 

probability distribution of those tuples. When constructing a tree, measures such as statistical 

significance, information gain, Gini index, and so on can be used to assess the goodness of a split. 

If partitioning the tuples at a node would result in a split that falls below a pre specified threshold, 

then further partitioning of the given subset is halted. There are difficulties, however, in choosing 

an appropriate threshold. High thresholds could result in oversimplified trees, whereas low 

thresholds could result in very little simplification. 

ii Post pruning 

Post pruning removes subtrees from a “fully grown” tree. A subtree at a given node is pruned by 

removing its branches and replacing it with a leaf. The leaf is labeled with the most frequent class 

among the subtree being replaced. Post pruning is done by computing the cost complexity. The 

cost complexity for each internal node N and the complexity if it were to be replaced by a leaf 

node is computed. If pruning would result in lower cost complexity, it would be pruned.  
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3.3    Rule Based Classifier 

Large decision trees are difficult to understand because each node has a specific context established 

by the outcomes of tests at antecedent nodes. To make a decision tree model more readable, a path 

to each leaf can be transformed into an IF - THEN production rule. The IF part consists of all tests 

on a path, and the THEN part is a final classification. Rules in this form are called decision rules. 

Rules are a good way of representing information or bits of knowledge. An IF-THEN rule is an 

expression of the form 

 IF condition THEN conclusion. 

An example is rule R1, 

 R1: IF age = youth AND student = yes THEN buys computer = yes. 

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or precondition. The 

“THEN”-part (or right-hand side) is the rule consequent. In the rule antecedent, the condition 

consists of one or more attribute tests (such as age = youth, and student = yes) that are logically 

ANDed. The rule’s consequent contains a class prediction (in this case, we are predicting whether 

a customer will buy a computer). R1 can also be written as  

 R1: (age = youth) ˄ (student = yes)) ⇒ (buys computer = yes). 

If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a given tuple, 

we say that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule 

covers the tuple. 

A rule R can be assessed by its coverage and accuracy 

 Given a tuple X from a data D 

 ncovers: Number of tuples covered by R 

 ncorrect: Number of tuples correctly classify by R 

 |D|: Number of tuples in D 

We can define the coverage and accuracy of R as 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅) =
𝑛𝑐𝑜𝑣𝑒𝑟𝑠

|𝐷|
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑛𝑐𝑜𝑣𝑒𝑟𝑠
 

For example, 

In the training set for buys_computer in table 2, for the rule R1 above, 
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ncovers = 2  [antecedent part is true for 2 tuples. i.e two tuples have age=youth as well as  

  student = yes] 

ncorrect = 2  [both antecedent part and consequent parts are true for 2 tuples] 

So,  

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅) =
2

14
= 14.28% 

And, 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) =
2

2
= 100% 

How does a rule based classifier work? 

If a rule is satisfied by a testing tuple X, a rule is said to be triggered. But triggering may not 

necessarily lead the rule to be fired. If more than one rule is triggered, we have a potential problem. 

What if they each specify a different class? Or what if no rule is satisfied by X? In such situation, 

three cases may arise: 

Case I 

If only rule is satisfied, then the rule fires by returning the class prediction for X.  

Case II 

If more than one rule is triggered, we need a conflict resolution strategy to figure out which rule 

gets to fire and assign its class prediction to X. There are many possible strategies. Rule ordering 

or rule ranking or rule priority can be set in case of rules conflict. A rule ordering may be class-

based or rule-based. 

 Rule-based ordering: Individual rules are ranked based on their quality i.e. according to 

accuracy, coverage etc.  

 Class-based ordering: Rules that belong to the same class appear together. The class are 

sorted in decreasing order of importance. 

When rule-based ordering is used, the rule set is known as a decision list. 

Case III 

If any instance not triggered by any rule, use default class for classification. Mostly most frequent 

class is assigned as default class which is usually the most frequent class. 
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Rule extraction from decision tree 

Decision tree classifiers are a popular method of classification. It is easy to understand how 

decision trees work and they are known for their accuracy. But decision trees can become large 

and difficult to interpret. 

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node. 

Each splitting criterion is logically ANDed to form the rule antecedent (IF part). Leaf node holds 

the class prediction for rule consequent (THEN part). 

For example, 

 

For the decision tree above, there are five possible rules which can be extracted (because there are 

five leaf nodes). They are as follows: 

R1: IF Outlook = sunny AND Humidity = High  THEN Play_Tennis = no 

R2: IF Outlook = sunny  AND Humidity = Normal  THEN Play_Tennis = yes 

R3: IF Outlook = Overcast      THEN  Play_Tennis = yes 

R4: IF Outlook = Rain  AND Wind = Weak   THEN Play_Tennis = yes 

R5: IF Outlook = Rain  AND Wind = Strong   THEN Play_Tennis = no 

3.4    Nearest Neighbor Classifier 

The nearest neighbor classifier uses the training tuples are stored in an n-dimensional pattern space 

to classify the testing tuple. A k-nearest-neighbor classifier searches the pattern space for the k 

training tuples that are closest to the unknown tuple. These k training tuples are the k “nearest 

neighbors” of the unknown tuple. For k-nearest-neighbor classification, the unknown tuple is 

assigned the most common class among its k nearest neighbors. When k = 1, the unknown tuple is 

assigned the class of the training tuple that is closest to it in pattern space. k-nearest neighbor is an 
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example of instance-based learning, in which the training data set is stored, so that a classification 

for a new unclassified record may be found simply by comparing it to the most similar records in 

the training set. 

Nearest neighbor classifier requires: 

 Set of stored records  

 Distance matric to compute distance between records. For distance calculation any 

standard approach can be used such as Euclidean distance.  

 The value of ‘K’, the number of nearest neighbor to retrieve. 

To classify the unknown records:  

 Compute distance to other training records.  

 Identify the k-nearest neighbor. 

 Use class label nearest neighbors to determine the class label of unknown record. In case 

of conflict, use the majority vote for classification. 

For Example, 

 

 

 

 

 

 

 

 

Issues with kNN classifier 

i. Choosing the value of K  

 One of challenge in classification is to choose the appropriate value of K. If K is too small, 

it is sensitive to noise points. If K is too large, neighbor may include points from other 

classes.  

 With the change of value of K, the classification result may vary as in example above. 

ii. Scaling Issue  

1-NN classifies X as  3-NN classifies X as  
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 Attribute may have to be scaled to prevent distance measure from being dominated by one 

of attributes. E.g. Height, Temperature etc.  

iii. Distance computing for non-numeric data.  

iv. Missing values 

Disadvantages 

i. Poor accuracy when data have noise and irrelevant attributes 

ii. Computationally expensive 

3.5    Bayesian Classifier 

Bayesian classifiers are statistical classifiers. They can predict class membership probabilities, 

such as the probability that a given tuple belongs to a particular class. Bayesian classification is 

based on Bayes’ theorem, named after Thomas Bayes (1702-1761). Naïve Bayesian classifiers 

assume that the effect of an attribute value on a given class is independent of the values of the 

other attributes. Bayesian classifier have minimum error rate compared to all other classifiers. It 

also has high accuracy and speed for large database.  

Bayes Theorem  

Let X be a data sample whose class label is unknown. Let H be some hypothesis: such that the data 

sample X belongs to a specific class C. We want to determine the probability that the hypothesis 

H holds given the observed data sample X (i.e. P(H|X)). P(H|X) is the posterior probability 

representing our confidence in the hypothesis after X is given. In contrast, P(H) is the prior 

probability of H for any sample, regardless of how the data in the sample look. The posterior 

probability P(H|X) is based on more information than the prior probability P(H). The Bayesian 

theorem provides a way of calculating the posterior probability P(H|X) using probabilities P(H), 

P(X), and P(X|H). The basic relation is: 

𝑃(𝐻|𝑋) =
𝑃(𝑋|𝐻) × 𝑃(𝐻)

𝑃(𝑋)
 

Or, the probability that an event H occurs given that another event X has already occurred is equal 

to the probability that the event X occurs given H has already occurred multiplied by probability 

that event H occurs divided by probability of occurrence of X. 
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For example, suppose our world of data tuples is confined to customers described by the attributes 

age and income, and that X is a 35-year-old customer with an income of $40,000. Suppose that H 

is the hypothesis that our customer will buy a computer. Then, 

P(H|X) → the probability that customer X will buy a computer given that we know the customer’s 

age and income. It is the posterior probability, or a posteriori probability, of H conditioned on X 

P(X|H) → the probability that a customer, X, is 35 years old and earns $40,000, given that we 

know the customer will buy a computer. It is the posterior probability of X conditioned on H. 

P(H) → the probability that any given customer will buy a computer, regardless of age, income, 

or any other information. It is the prior probability, or a priori probability, of H. 

P(X) → the probability that a person from our set of customers is 35 years old and earns $40,000. 

It is the prior probability of X. 

Naïve Bayesian Classification 

Let D be a training set of tuples and their associated class labels. 

Given a tuple, X, the classifier will predict that X belongs to the class having the highest posterior 

probability, conditioned on X. That is, the naïve Bayesian classifier predicts that tuple X belongs 

to the class Ci if and only if 

P(Ci|X) > P(Cj|X) for 1 ≤ j ≤m,  j ≠ i 

Where, 

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖) × 𝑃(𝐶𝑖)

𝑃(𝑋)
 

Here, P(X) is constant for all classes. So, only P(X|Ci) × P(Ci) needs to be maximized. 

It would be extremely computationally expensive to compute P(X|Ci). In order to reduce 

computation in evaluating P(X|Ci), the naïve assumption of class conditional independence is 

made. This presumes that the values of the attributes are conditionally independent of one another, 

given the class label of the tuple (i.e., that there are no dependence relationships among the 

attributes). Thus, 

𝑃(𝑋|𝐶𝑖) = ∏ 𝑃(𝑋𝑘|𝐶𝑖)

𝑛

𝑘=1

 

                                                                                =  𝑃(𝑋1|𝐶𝑖) × 𝑃(𝑋2|𝐶𝑖) × 𝑃(𝑋3|𝐶𝑖) × ⋯ 𝑃(𝑋𝑛|𝐶𝑖) 

For example, 
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ID Age Income Student Credit_Rating Buy_Computer? 

1 Youth High No Fair No 

2 Youth High No Excellent No 

3 Middle_aged High No Fair Yes 

4 Senior Medium No Fair Yes 

5 Senior Low Yes Fair Yes 

6 Senior Low Yes Excellent No 

7 Middle_aged Low Yes Excellent Yes 

8 Youth Medium No Fair No 

9 Youth Low Yes Fair Yes 

10 Senior Medium Yes Fair Yes 

11 Youth Medium Yes Excellent Yes 

12 Middle_aged Medium No Excellent Yes 

13 Middle_aged High Yes Fair Yes 

14 Senior Medium No Excellent No 

Table 2: Buys_Computer data 

Test data: X:(Age=Youth, Income=Medium, Student=Yes, Credit_Rating=Fair) 

Let  C1: Buys_Computer=Yes 

 C2: Buys_Computer=No 

So, 

 P(C1)=P(Buys_Computer=Yes) = 9/14 = 0.643 

 P(C2)=P(Buys_Computer=No) = 5/14 = 0.357 

To compute, 𝑃(𝑋|𝐶𝑖) for i=1,2 we first compute following conditional probabilities: 

P(Age = Youth | Buys_Computer = Yes) = 2/9 = 0.222 

P(Age = Youth | Buys_Computer = No) = 3/5 = 0.600 

P(Income = Medium | Buys_Computer = Yes) = 4/9 = 0.444 

P(Income = Medium | Buys_Computer = No) = 2/5 = 0.400 

P(Student = Yes | Buys_Computer = Yes) = 6/9 = 0.667 

P(Student = Yes | Buys_Computer = No) = 1/5 = 0.200 

P(Credit_Rating = Fair | Buys_Computer = Yes) = 6/9 = 0.667 
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P(Credit_Rating = Fair | Buys_Computer = No) = 2/5 = 0.400 

Hence, 

P(X|C1)=P(X| Buys_Computer=Yes)=  P(Age = Youth | Buys_Computer = Yes) ×  

      P(Income = Medium | Buys_Computer = Yes) × 

      P(Student = Yes | Buys_Computer = Yes) ×  

      P(Credit_Rating = Fair | Buys_Computer = Yes) 

              = 0.222 × 0.444 × 0.667 × 0.667 

             = 0.044 

P(X|C2)=P(X| Buys_Computer=No) =  P(Age = Youth | Buys_Computer = No) ×  

      P(Income = Medium | Buys_Computer = No) × 

      P(Student = Yes | Buys_Computer = No) ×  

      P(Credit_Rating = Fair | Buys_Computer = No) 

              = 0.600 × 0.400 × 0.200 × 0.400 

             = 0.019 

To find class Ci that maximizes P(X|Ci)P(Ci), we compute, 

P(X| Buys_Computer=Yes) ×P(Buys_Computer=Yes)=0.444×0.643=0.028 

P(X| Buys_Computer=No) ×P(Buys_Computer=No)=0.019×0.357=0.007 

Therefore Naïve Bayesian Classifier classifies  

 X:(Age=Youth, Income=Medium, Student=Yes, Credit_Rating=Fair) 

  as class Buys_Computer=Yes 

3.6    Artificial Neural Network Classifier 

An Artificial Neural Network is an abstract computational model of the human brain. The human 

brain has an estimated 1011 tiny units called neurons. These neurons are interconnected with an 

estimated 1015 links. Similar to the brain, an ANN is composed of artificial neurons (or processing 

units) and interconnections. When we view such a network as a graph, neurons can be represented 

as nodes (or vertices) and interconnections as edges. Although the term ANN is most commonly 

used, other names include “neural network”, parallel distributed processing (PDP) system, 

connectionist model, and distributed adaptive system. ANNs are also referred to in the literature 

as neurocomputers. 
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An Artificial Neural Network (ANN) is a massive parallel distributed processor made up of simple 

processing units. It has the ability to learn experiential knowledge expressed through interunit 

connection strengths, and can make such knowledge available for use. 

 

ANN represents a very basic level to imitate the type of nonlinear learning that occurs in the nature. 

The inputs (x ) are collected from upstream neurons (or the data set) and combined through a 

combination function such as summation (Σ), which is then input into a (usually nonlinear) 

activation function to produce an output response (y), which is then channeled downstream to other 

neurons. 

Backpropagation learns by iteratively processing a data set of training tuples, comparing the 

network’s prediction for each tuple with the actual known target value. For each training tuple, 

the weights are modified so as to minimize the mean squared error between the network’s 

prediction and the actual target value. These modifications are made in the “backwards” direction, 

that is, from the output layer, through each hidden layer down to the first hidden layer (hence the 

name backpropagation). Although it is not guaranteed, in general the weights will eventually 

converge, and the learning process stops. 

Before training the network topology must be designed by:  

i. Specifying number of input nodes/units: Depends upon number of independent variable in data 

set.  

ii. Specifying Number of hidden layers: Generally only one layer is considered in most of the 

problem. Two layers can be designed for complex problem. Number of nodes in the hidden 

layer can be adjusted iteratively.  

iii. Number of output nodes/units: Depends upon number of class labels of the data set.  

iv. Learning rate: Can be adjusted iteratively.  

v. Learning algorithm: Any appropriate learning algorithm can be selected during training phase.  

vi. Bias value: Can be adjusted iteratively. 
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Algorithm 

1. Initialize the weight and inputs 

2. Calculate the outputs as 

For input layer j, 𝑂𝑗 = 𝐼𝑗 

For output and hidden layer, 

𝐼𝑗 =  ∑ 𝑊𝑖𝑗𝑂𝑖 

𝑂𝑗 =  
1

1 + 𝑒−𝐼𝑗
 

3. Calculate the error as 

For output layer 

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)(𝑇 − 𝑂𝑗) 

For hidden layer 

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝐸𝑟𝑟𝑘

𝑘

𝑊𝑗𝑘 

4. Update the weights 

𝑊𝑖𝑗(𝑛𝑒𝑤) = 𝑊𝑖𝑗(𝑂𝑙𝑑) + ∆𝑊𝑖𝑗 

Where, 

∆𝑊𝑖𝑗 = (𝑙)𝐸𝑟𝑟𝑗𝑂𝑖 

Where, 𝑙 is the learning rate. 
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Advantages 

i. High tolerance of noisy data 

ii. Classify patterns on which they have not been trained 

iii. Can be used in various applications such as handwriting recognition, image classification, text 

narration etc. 

iv. Parallelization can be implemented 

Disadvantages 

i. Require long training time 

ii. Requires number of parameters whose best value is unknown 

iii. Difficulty to interpret the meaning of weights and hidden network 

3.7    Issues: Overfitting, Validation and Model Comparison 

Overfitting 

Overfitting refers to a model that models the training data too well. Overfitting occurs when a 

statistical model describes random error or noise instead of the underlying relationship. This means 

that the noise or random fluctuations in the training data is picked up and learned as concepts by 

the model. The problem is that these concepts do not apply to new data and negatively impact the 

models ability to generalize. 

Overfitting generally occurs when a model is excessively complex, such as having too many 

parameters relative to the number of observations. A model which has been overfit will generally 

have poor predictive performance. In order to avoid Overfitting, it is necessary to use additional 

techniques (e.g. cross validation, pruning (Pre or Post), model comparison etc. 

Reason  

- Noise in training data.  

- Incomplete training data.  

- Flaw in assumed theory 

Underfitting:  

It refers to a model that can neither model the training data nor generalize to new data. An underfit 

machine learning model is not a suitable model and will be obvious as it will have poor 

performance on the training data. Underfitting is often not discussed as it is easy to detect given a 

good performance metric. The remedy is to move on and try alternate machine learning algorithms.  
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How to Limit Overfitting  

Both Overfitting and underfitting can lead to poor model performance. But by far the most 

common problem in applied machine learning is overfitting.  

Overfitting is such a problem because the evaluation of machine learning algorithms on training 

data is different from the evaluation we actually care the most about, namely how well the 

algorithm performs on unseen data.  

There are two important techniques that you can use when evaluating machine learning algorithms 

to limit overfitting:  

 Use a resampling technique to estimate model accuracy.  

 Hold back a validation dataset.  

Validation 

Validation is the process of evaluating the model using the training dataset. It is done by a 

resampling techinique called cross validation 

Cross validation (The holdout method) 

Datasets can be categorized into three types: the training data, the validation data, and the test 

data. The training data is used by one or more learning methods to come up with classifiers. The 

validation data is used to optimize parameters of those classifiers, or to select a particular one. 

Then the test data is used to calculate the error rate of the final, optimized, method. 

The real problem occurs when there is not a vast supply of data available. In many situations the 

training data must be classified manually—and so must the test data, of course, to obtain error 

estimates. This limits the amount of data that can be used for training, validation, and testing, and 

the problem becomes how to make the most of a limited dataset. From this dataset, a certain 

amount is held over for testing—this is called the holdout procedure—and the remainder is used 

for training (and, if necessary, part of that is set aside for validation). 

k-fold cross-validation  

In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive 

subsets or “folds,” D1, D2 . . . , Dk, each of approximately equal size. Training and testing is 

performed k times. In iteration i, partition Di is reserved as the test set, and the remaining partitions 

are collectively used to train the model. That is, in the first iteration, subsets D2, . . . , Dk collectively 

serve as the training set in order to obtain a first model, which is tested on D1; the second iteration 
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is trained on subsets D1, D3, . . .  , Dk and tested on D2; and so on. Unlike the holdout and random 

subsampling methods above, here, each sample is used the same number of times for training and 

once for testing. For classification, the accuracy estimate is the overall number of correct 

classifications from the k iterations, divided by the total number of tuples in the initial data. 

 

Model Comparison 

Models can be evaluated based on the output using different method:  

i. Confusion Matrix  

ii. ROC Analysis 

Confusion Matrix 

A confusion matrix, sometimes called a classification matrix, is used to assess the prediction 

accuracy of a model. It measures whether a model is confused or not, that is, whether the model is 

making mistakes in its predictions or not. 

Figure 2. k-fold Cross Validation 
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In the two-class case with classes yes and no, buys computer or not, plays golf or not and so on, a 

single prediction has the four different possible outcomes shown in Table 3. Given m classes, a 

confusion matrix is a table of at least size m by m. An entry, CMi, j in the first m rows and m columns 

indicates the number of tuples of class i that were labeled by the classifier as class j. 

 

Table 3: Confusion Matrix 

True positive (TP) refer to the positive tuples that were correctly labeled by the classifier. 

True Negative (TN) are the negative tuples that were correctly labeled by the classifier. 

A false positive (FP) occurs when the outcome is incorrectly predicted as yes (or positive) when 

it is actually no (negative). e.g., tuples of class buys_computer = no for which the classifier 

predicted buys_computer = yes 

A false negative (FN) occurs when the outcome is incorrectly predicted as negative when it is 

actually positive. e.g., tuples of class buys_computer = yes for which the classifier predicted 

buys_computer = no 

Accuracy is not always the best measure of the quality of the classification model. It is especially 

true for the real - world problems where the distribution of classes is unbalanced. For example, if 

the problem is classification of healthy persons from those with the disease. In many cases the 

medical database for training and testing will contain mostly healthy persons (99%), and only 

small percentage of people with disease (about 1%). In that case, no matter how good the accuracy 

of a model is estimated to be, there is no guarantee that it reflects the real world. Therefore, we 

need other measures for model quality. In practice, several measures are developed, and some of 

the best known are as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
  

 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑃+𝑁
  

 Predicted Class 

Actual Class 

 Yes No Total 

Yes True Positive True Negative P 

No False Positive False Negative N 

Total P’ N’ P+N 
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 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 

---Refer notes for example--- 

ROC Analysis 

ROC curves are a useful visual tool for comparing two classification models. The name ROC 

stands for Receiver Operating Characteristic. A ROC curve shows the trade-off between the true 

positive rate or sensitivity (proportion of positive tuples that are correctly identified) and the false-

positive rate (proportion of negative tuples that are incorrectly identified as positive) for a given 

model. That is, given a two-class problem, it allows us to visualize the trade-off between the rate 

at which the model can accurately recognize ‘yes’ cases versus the rate at which it mistakenly 

identifies ‘no’ cases as ‘yes’ for different “portions” of the test set. Any increase in the true positive 

rate occurs at the cost of an increase in the false-positive rate. The area under the ROC curve is a 

measure of the accuracy of the model. A typical example is a diagnostic process in medicine, where 

it is necessary to classify the patient as being with or without disease. For these types of problems, 

two different yet related error rates are of interest. The False Acceptance Rate (FAR) is the ratio 

of the number of test cases that are incorrectly “accepted” by a given model to the total number of 

cases. For example, in medical diagnostics, these are the cases in which the patient is wrongly 

predicted as having a disease. On the other hand, the False Reject Rate (FRR) is the ratio of the 

number of test cases that are incorrectly “rejected” by a given model to the total number of cases. 

In order to plot an ROC curve for a given classification model, M, the model must be able to return 

a probability or ranking for the predicted class of each test tuple. That is, we need to rank the test 

tuples in decreasing order, where the one the classifier thinks is most likely to belong to the positive 

or ‘yes’ class appears at the top of the list. The vertical axis of an ROC curve represents the true 

positive rate. The horizontal axis represents the false-positive rate. An ROC curve for M is plotted 

as follows. Starting at the bottom left-hand corner (where the true positive rate and false-positive 

rate are both 0), we check the actual class label of the tuple at the top of the list. If we have a true 

positive (that is, a positive tuple that was correctly classified), then on the ROC curve, we move 

up and plot a point. If, instead, the tuple really belongs to the ‘no’ class, we have a false positive. 
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On the ROC curve, we move right and plot a point. This process is repeated for each of the test 

tuples, each time moving up on the curve for a true positive or toward the right for a false positive. 

To assess the accuracy of a model, we can measure the area under the curve. The closer the area 

is to 0.5, the less accurate the corresponding model is. A model with perfect accuracy will have an 

area of 1.0. 

  

Figure 3 A sample ROC curve 
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