
Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 1

Classification

3.1 Introduction

Classification is the process where a model or classifier is constructed to predict categorical labels

of unknown data. Classification problems aim to identify the characteristics that indicate the group

to which each case belongs. This pattern can be used both to understand the existing data and to

predict how new instances will behave.

Definition: Classification is the task of learning a target function f that maps each attribute set X to

one of the predefined class label Y.

For example, classification of loan applicants as “safe” or “risky” for the bank, whether a customer

with a given profile will buy a new computer or not, whether a patient is a good candidate for a

surgical procedure or not etc.

Data classification is a two-step process:

I. Model construction

In the first step, a classifier is built describing a predetermined set of data classes or concepts. This

is the learning step (or training phase), where a classification algorithm builds the classifier by

analyzing or “learning from” a training set made up of database tuples and their associated class

labels.

II. Model usage

In the second step, the model is used for classification. Test data are used to estimate the accuracy

of the classification rules. If the accuracy is considered acceptable, the rules can be applied to the

classification of new data tuples.

Training set

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 2

Example:

Issues Regarding Classification

i. Preparing the Data for Classification

Data cleaning: This refers to the preprocessing of data in order to remove or reduce noise (by

applying smoothing techniques, for example) and the treatment of missing values (e.g., by

replacing a missing value with the most commonly occurring value for that attribute, or with the

most probable value based on statistics).

Relevance analysis: Many of the attributes in the data may be redundant. Correlation analysis can

be used to identify whether any two given attributes are statistically related. For example, a strong

correlation between attributes A1 and A2 would suggest that one of the two could be removed from

further analysis.

Data transformation and reduction: The data may be transformed by normalization, particularly

when neural networks or methods involving distance measurements are used in the learning step.

Normalization involves scaling all values for a given attribute so that they fall within a small

specified range, such as -1.0 to 1.0, or 0.0 to 1.0. Data can also be reduced by applying methods

such as binning, histogram analysis, and clustering.

ii. Evaluating Classification Methods

Classification methods can be compared and evaluated according to the following criteria:

Accuracy: The accuracy of a classifier refers to the ability of a given classifier to correctly predict

the class label of new or previously unseen data (i.e., tuples without class label information).

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 3

Speed: This refers to the computational costs involved in generating and using the given classifier

or predictor.

Robustness: This is the ability of the classifier or predictor to make correct predictions given noisy

data or data with missing values.

Scalability: This refers to the ability to construct the classifier or predictor efficiently given large

amounts of data.

Types of Classifiers:

 Decision Tree classifier

 Rule Based Classifier

 Nearest Neighbor Classifier

 Bayesian Classifier

 Artificial Neural Network (ANN) Classifier

3.2 Decision Tree Classifier

Decision tree is a collection of decision nodes, connected by branches, extending downward from

the root node until terminating in leaf nodes. Beginning at the root node, which by convention is

placed at the top of the decision tree diagram, attributes are tested at the decision nodes, with each

possible outcome resulting in a branch. Each branch then leads either to another decision node or

to a terminating leaf node.

Figure 1. Decision tree for the credit risk data.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 4

The problem of constructing a decision tree can be expressed recursively. First, select an attribute

to place at the root node and make one branch for each possible value. This splits up the example

set into subsets, one for every value of the attribute. Now the process can be repeated recursively

for each branch, using only those instances that actually reach the branch. If at any time all

instances at a node have the same classification, stop developing that part of the tree.

“How are decision trees used for classification?” Given a tuple, X, for which the associated class

label is unknown, the attribute values of the tuple are tested against the decision tree. A path is

traced from the root to a leaf node, which holds the class prediction for that tuple (X). Decision

trees can easily be converted to classification rules as well.

The only (and the most important) thing left to decide is how to determine which attribute to split

on, given a set of examples with different classes. Consider the weather data in the table 1. There

are four possibilities for root node (Outlook, Temperature, Humidity and Wind). Which is the best

choice? The number of yes and no classes are shown at the leaves. Any leaf with only one class—

yes or no—will not have to be split further, and the recursive process down that branch will

terminate. Because we seek small trees, we would like this to happen as soon as possible. If we

had a measure of the purity of each node, we could choose the attribute that produces the purest

child nodes.

Attribute Selection Measures

An attribute selection measure is an approach for selecting the splitting criterion that “best”

separates a given data partition, D, of class-labeled training tuples into individual classes. If we

were to split D into smaller partitions according to the outcomes of the splitting criterion, ideally

each partition would be pure (i.e. all of the tuples that fall into a given partition would belong to

the same class). Conceptually, the “best” splitting criterion is the one that most closely results in

such a scenario. Attribute selection measure is also known as splitting rules because they determine

how the tuples at a given nodes are to be split.

There are three popular attribute selection measures—information gain, gain ratio, and gini index.

a. Information Gain

Information gain is used by ID3 algorithm. The attribute with the highest information gain is

chosen as the splitting attribute for node N. This attribute minimizes the information needed to

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 5

classify the tuples in the resulting partitions and reflects the least randomness or “impurity” in

these partitions.

The expected information needed to classify a tuple in D is given by

𝐼𝑛𝑓𝑜(𝐷) = − ∑ 𝑃𝑖 𝑙𝑜𝑔2(𝑃𝑖)

𝑚

𝑖=1

Where Pi= probability that an arbitrary tuple D belongs to class Ci

At this point, the information we have is based solely on the proportions of tuples of each class.

Info(D) is also known as the entropy of D.

Now, suppose we were to partition the tuples in D on some attribute A having v distinct values,

{a1, a2, . . . , aV} as observed from the training data. Attribute A can be used to split D into v

partitions or subsets, {D1, D2, . . . , Dv}, where Dj contains those tuples in D that have outcome aj

of A. How much more information would we still need (after the partitioning) in order to arrive at

an exact classification? This amount is measured by

𝐼𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

𝐷
× 𝐼𝑛𝑓𝑜(𝐷𝑗)

𝑣

𝑗=1

|Dj|/D acts as the weight of the jth partition. InfoA(D) is the expected information required to classify

a tuple from D based on the partitioning by A.

Finally the information gain of any attribute A can be calculated as:

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝐴(𝐷)

In other words, Gain(A) tells us how much would be gained by branching on A. The attribute A

with the highest information gain, (Gain(A)), is chosen as the splitting attribute at node N. This is

equivalent to saying that we want to partition on the attribute A that would do the “best

classification,” so that the amount of information still required to finish classifying the tuples is

minimal (i.e., minimum InfoA(D)).

Example 1: Decision tree using information gain.

Table below presents a training set, D, of class-labeled tuples randomly selected from the weather

dataset consisting of weather information of last 14 days and whether a match was played on that

day or not. Now using the decision tree we need to predict whether the game will happen or not in

the day with testing attributes.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 6

Day Outlook Temperature Humidity Wind Play_Tennis?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Table 1. Weather data

In this example, the class label attribute, play_tennis, has two distinct values (yes, no); therefore,

there are two distinct classes (i.e., m = 2). Let class C1 correspond to yes and class C2 correspond

to no. There are nine tuples of class yes and five tuples of class no. A (root) node N is created for

the tuples in D. To find the splitting criterion for these tuples, we must compute the information

gain of each attribute.

We first compute the expected information needed to classify a tuple in D as,

𝐼𝑛𝑓𝑜(𝐷) = − [
9

14
𝑙𝑜𝑔2 (

9

14
) +

5

14
𝑙𝑜𝑔2 (

5

14
)] = 0.940 𝑏𝑖𝑡𝑠

Next, we need to compute the expected information requirement for each attribute. Let’s start with

the attribute Outlook. We need to look at the distribution of yes and no tuples for each category of

age. For the Outlook category sunny, there are two yes tuples and three no tuples (total five). For

the category Overcast, there are four yes tuples and zero no tuples (total four). For the category

Rain, there are three yes tuples and two no tuples (total five).

So, the expected information needed to classify a tuple in D if the tuples are partitioned according

to Outlook is

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 7

𝐼𝑛𝑓𝑜𝑂𝑢𝑡𝑙𝑜𝑜𝑘(𝐷) =
5

14
× [−

2

5
𝑙𝑜𝑔2 (

2

5
) −

3

5
𝑙𝑜𝑔2 (

3

5
)] +

4

14
× [−

4

4
𝑙𝑜𝑔2 (

4

4
) −

0

4
𝑙𝑜𝑔2 (

0

4
)]

+
5

14
× [−

3

5
𝑙𝑜𝑔2 (

3

5
) −

2

5
𝑙𝑜𝑔2 (

2

5
)] = 0.694 𝑏𝑖𝑡𝑠

Hence, the gain in information from such a partitioning would be

𝐺𝑎𝑖𝑛(𝑂𝑢𝑡𝑙𝑜𝑜𝑘) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝑂𝑢𝑡𝑙𝑜𝑜𝑘(𝐷) = 0.940 − 0.694 = 0.246 𝑏𝑖𝑡𝑠

Similarly,

𝐼𝑛𝑓𝑜𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦(𝐷) =
7

14
× [−

3

7
𝑙𝑜𝑔2 (

3

7
) −

4

7
𝑙𝑜𝑔2 (

4

7
)] +

7

14
× [−

6

7
𝑙𝑜𝑔2 (

6

7
) −

1

7
𝑙𝑜𝑔2 (

1

7
)]

= 0.787 𝑏𝑖𝑡𝑠

Hence, the gain in information from such a partitioning would be

𝐺𝑎𝑖𝑛(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦(𝐷) = 0.940 − 0.787 = 0.153 𝑏𝑖𝑡𝑠

In similar way we can compute,

Gain(Temperature)= 0.031 bits

Gain(Wind)=0.048 bits

Because Outlook has the highest information gain (0.246) among the attributes, it is selected as

the splitting attribute. Node N is labeled with Outlook, and branches are grown for each of the

attribute’s values. The tuples are then partitioned accordingly. So, initially our decision tree will

look like:

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 8

Notice that the tuples falling into the partition for Outlook = overcast all belong to the same class.

Because they all belong to class “yes,” a leaf should therefore be created at the end of this branch

and labeled with “yes”.

As we can see, for Outlook being sunny, there are 2 yes and 3 no. So we have to further split the

decision tree. To do so, we need to compute information gain of attributes for the sub table on the

left using same methods as above.

So, 𝐼𝑛𝑓𝑜(𝐷) = − [
2

5
𝑙𝑜𝑔2 (

2

5
) +

3

5
𝑙𝑜𝑔2 (

3

5
)] = 0.970 𝑏𝑖𝑡𝑠

So, the expected information needed to classify a tuple in D if the tuples are partitioned according

to Outlook is

𝐼𝑛𝑓𝑜𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝐷) =
2

5
× [−

0

2
𝑙𝑜𝑔2 (

0

2
) −

2

2
𝑙𝑜𝑔2 (

2

2
)] +

2

5
× [−

1

2
𝑙𝑜𝑔2 (

1

2
) −

1

2
𝑙𝑜𝑔2 (

1

2
)]

+
1

5
× [−

1

1
𝑙𝑜𝑔2 (

1

1
) −

0

1
𝑙𝑜𝑔2 (

0

1
)] = 0.400 𝑏𝑖𝑡𝑠

𝐺𝑎𝑖𝑛(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 𝐼𝑛𝑓𝑜(𝐷)−𝐼𝑛𝑓𝑜𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝐷) = 0.970 − 0.400 = 0.570 𝑏𝑖𝑡𝑠

In similar way we can compute,

Gain(Humidity)=0.970 bits

Gain(Wind)=0.020 bits

So, we select Humidity as splitting criteria. In similar way, we can compute information gain for

all attributes in right sub table. In the right sub table, Wind will be our splitting criteria. So our

final decision tree will be as follows:

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 9

b. Gain Ratio

The information gain measure is biased toward tests with many outcomes. That is, it prefers to

select attributes having a large number of values. C4.5, a successor of ID3, uses an extension to

information gain known as gain ratio, which attempts to overcome this bias. It applies a kind of

normalization to information gain using a “split information” value defined analogously with

Info(D) as

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − ∑
|𝐷𝑗|

|𝐷|
× 𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
)

𝑣

𝑗=1

This value represents the potential information generated by splitting the training data set, D, into

v partitions, corresponding to the v outcomes of a test on attribute A. Note that, for each outcome,

it considers the number of tuples having that outcome with respect to the total number of tuples in

D. It differs from information gain, which measures the information with respect to classification

that is acquired based on the same partitioning. The gain ratio is defined as

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷)

The attribute with the maximum gain ratio is selected as the splitting attribute.

For example

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 10

A test on Temperature splits the data of Table 1 into three partitions, namely cool, mild, and hot,

containing four, six, and four tuples, respectively. To compute the gain ratio of Temperature, we

first compute

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = − [
4

14
𝑙𝑜𝑔2 (

4

14
) +

6

14
𝑙𝑜𝑔2 (

6

14
) +

4

14
𝑙𝑜𝑔2 (

4

14
)] = 0.926 𝑏𝑖𝑡𝑠

From above example, we have Gain(Temperature)=0.031 bits

Therefore, GainRatio(Temperature)=0.031/0.926=0.033 bits.

c. Gini Index

The Gini index is used in CART. Using the notation described above, the Gini index measures the

impurity of D, a data partition or set of training tuples, as

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑖
2

𝑚

𝑖=1

Where, pi is the probability that a tuple in D belongs to class Ci and is estimated by |Ci,D|/|D|. The

sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case where A is

a discrete-valued attribute having v distinct values, {a1, a2, . . . , av}, occurring in D. To determine

the best binary split on A, we examine all of the possible subsets that can be formed using known

values of A.

When considering a binary split, we compute a weighted sum of the impurity of each resulting

partition. For example, if a binary split on A partitions D into D1 and D2, the gini index of D given

that partitioning is

𝐺𝑖𝑛𝑖𝐴(𝐷) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2)

For each attribute, each of the possible binary splits is considered. The reduction in impurity that

would be incurred by a binary split on a discrete- or continuous-valued attribute A is

Gini(A) = Gini(D)-GiniA(D).

-------------Refer Text Book------------------

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training data due

to noise or outliers. Tree pruning methods address this problem of overfitting the data. Such

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 11

methods typically use statistical measures to remove the least reliable branches. The pruned trees

are smaller and less complex. The dual goal of pruning is reduced complexity of the final classifier

as well as better predictive accuracy by the reduction of overfitting and removal of sections of a

classifier that may be based on noisy data. A tree that is too large risks overfitting the training data

and poorly generalizing to new samples.

A small tree might not capture important structural information about the sample space. But it is

hard to tell when a tree algorithm should stop because it is impossible to tell if the addition of a

single extra node will dramatically decrease error. A common strategy is to grow the tree until

each node contains a small number of instances then use pruning to remove nodes that do not

provide additional information.

Pruning should reduce the size of a learning tree without reducing predictive accuracy as measured

by a test set or using cross-validation.

Approaches:

i Pre pruning

In the pre pruning approach, a tree is “pruned” by halting its construction early (e.g. by deciding

not to further split or partition the subset of training tuples at a given node). Upon halting, the node

becomes a leaf. The leaf may hold the most frequent class among the subset tuples or the

probability distribution of those tuples. When constructing a tree, measures such as statistical

significance, information gain, Gini index, and so on can be used to assess the goodness of a split.

If partitioning the tuples at a node would result in a split that falls below a pre specified threshold,

then further partitioning of the given subset is halted. There are difficulties, however, in choosing

an appropriate threshold. High thresholds could result in oversimplified trees, whereas low

thresholds could result in very little simplification.

ii Post pruning

Post pruning removes subtrees from a “fully grown” tree. A subtree at a given node is pruned by

removing its branches and replacing it with a leaf. The leaf is labeled with the most frequent class

among the subtree being replaced. Post pruning is done by computing the cost complexity. The

cost complexity for each internal node N and the complexity if it were to be replaced by a leaf

node is computed. If pruning would result in lower cost complexity, it would be pruned.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 12

3.3 Rule Based Classifier

Large decision trees are difficult to understand because each node has a specific context established

by the outcomes of tests at antecedent nodes. To make a decision tree model more readable, a path

to each leaf can be transformed into an IF - THEN production rule. The IF part consists of all tests

on a path, and the THEN part is a final classification. Rules in this form are called decision rules.

Rules are a good way of representing information or bits of knowledge. An IF-THEN rule is an

expression of the form

 IF condition THEN conclusion.

An example is rule R1,

 R1: IF age = youth AND student = yes THEN buys computer = yes.

The “IF”-part (or left-hand side) of a rule is known as the rule antecedent or precondition. The

“THEN”-part (or right-hand side) is the rule consequent. In the rule antecedent, the condition

consists of one or more attribute tests (such as age = youth, and student = yes) that are logically

ANDed. The rule’s consequent contains a class prediction (in this case, we are predicting whether

a customer will buy a computer). R1 can also be written as

 R1: (age = youth) ˄ (student = yes)) ⇒ (buys computer = yes).

If the condition (that is, all of the attribute tests) in a rule antecedent holds true for a given tuple,

we say that the rule antecedent is satisfied (or simply, that the rule is satisfied) and that the rule

covers the tuple.

A rule R can be assessed by its coverage and accuracy

 Given a tuple X from a data D

 ncovers: Number of tuples covered by R

 ncorrect: Number of tuples correctly classify by R

 |D|: Number of tuples in D

We can define the coverage and accuracy of R as

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅) =
𝑛𝑐𝑜𝑣𝑒𝑟𝑠

|𝐷|

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑛𝑐𝑜𝑣𝑒𝑟𝑠

For example,

In the training set for buys_computer in table 2, for the rule R1 above,

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 13

ncovers = 2 [antecedent part is true for 2 tuples. i.e two tuples have age=youth as well as

 student = yes]

ncorrect = 2 [both antecedent part and consequent parts are true for 2 tuples]

So,

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅) =
2

14
= 14.28%

And,

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑅) =
2

2
= 100%

How does a rule based classifier work?

If a rule is satisfied by a testing tuple X, a rule is said to be triggered. But triggering may not

necessarily lead the rule to be fired. If more than one rule is triggered, we have a potential problem.

What if they each specify a different class? Or what if no rule is satisfied by X? In such situation,

three cases may arise:

Case I

If only rule is satisfied, then the rule fires by returning the class prediction for X.

Case II

If more than one rule is triggered, we need a conflict resolution strategy to figure out which rule

gets to fire and assign its class prediction to X. There are many possible strategies. Rule ordering

or rule ranking or rule priority can be set in case of rules conflict. A rule ordering may be class-

based or rule-based.

 Rule-based ordering: Individual rules are ranked based on their quality i.e. according to

accuracy, coverage etc.

 Class-based ordering: Rules that belong to the same class appear together. The class are

sorted in decreasing order of importance.

When rule-based ordering is used, the rule set is known as a decision list.

Case III

If any instance not triggered by any rule, use default class for classification. Mostly most frequent

class is assigned as default class which is usually the most frequent class.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 14

Rule extraction from decision tree

Decision tree classifiers are a popular method of classification. It is easy to understand how

decision trees work and they are known for their accuracy. But decision trees can become large

and difficult to interpret.

To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.

Each splitting criterion is logically ANDed to form the rule antecedent (IF part). Leaf node holds

the class prediction for rule consequent (THEN part).

For example,

For the decision tree above, there are five possible rules which can be extracted (because there are

five leaf nodes). They are as follows:

R1: IF Outlook = sunny AND Humidity = High THEN Play_Tennis = no

R2: IF Outlook = sunny AND Humidity = Normal THEN Play_Tennis = yes

R3: IF Outlook = Overcast THEN Play_Tennis = yes

R4: IF Outlook = Rain AND Wind = Weak THEN Play_Tennis = yes

R5: IF Outlook = Rain AND Wind = Strong THEN Play_Tennis = no

3.4 Nearest Neighbor Classifier

The nearest neighbor classifier uses the training tuples are stored in an n-dimensional pattern space

to classify the testing tuple. A k-nearest-neighbor classifier searches the pattern space for the k

training tuples that are closest to the unknown tuple. These k training tuples are the k “nearest

neighbors” of the unknown tuple. For k-nearest-neighbor classification, the unknown tuple is

assigned the most common class among its k nearest neighbors. When k = 1, the unknown tuple is

assigned the class of the training tuple that is closest to it in pattern space. k-nearest neighbor is an

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 15

example of instance-based learning, in which the training data set is stored, so that a classification

for a new unclassified record may be found simply by comparing it to the most similar records in

the training set.

Nearest neighbor classifier requires:

 Set of stored records

 Distance matric to compute distance between records. For distance calculation any

standard approach can be used such as Euclidean distance.

 The value of ‘K’, the number of nearest neighbor to retrieve.

To classify the unknown records:

 Compute distance to other training records.

 Identify the k-nearest neighbor.

 Use class label nearest neighbors to determine the class label of unknown record. In case

of conflict, use the majority vote for classification.

For Example,

Issues with kNN classifier

i. Choosing the value of K

 One of challenge in classification is to choose the appropriate value of K. If K is too small,

it is sensitive to noise points. If K is too large, neighbor may include points from other

classes.

 With the change of value of K, the classification result may vary as in example above.

ii. Scaling Issue

1-NN classifies X as 3-NN classifies X as

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 16

 Attribute may have to be scaled to prevent distance measure from being dominated by one

of attributes. E.g. Height, Temperature etc.

iii. Distance computing for non-numeric data.

iv. Missing values

Disadvantages

i. Poor accuracy when data have noise and irrelevant attributes

ii. Computationally expensive

3.5 Bayesian Classifier

Bayesian classifiers are statistical classifiers. They can predict class membership probabilities,

such as the probability that a given tuple belongs to a particular class. Bayesian classification is

based on Bayes’ theorem, named after Thomas Bayes (1702-1761). Naïve Bayesian classifiers

assume that the effect of an attribute value on a given class is independent of the values of the

other attributes. Bayesian classifier have minimum error rate compared to all other classifiers. It

also has high accuracy and speed for large database.

Bayes Theorem

Let X be a data sample whose class label is unknown. Let H be some hypothesis: such that the data

sample X belongs to a specific class C. We want to determine the probability that the hypothesis

H holds given the observed data sample X (i.e. P(H|X)). P(H|X) is the posterior probability

representing our confidence in the hypothesis after X is given. In contrast, P(H) is the prior

probability of H for any sample, regardless of how the data in the sample look. The posterior

probability P(H|X) is based on more information than the prior probability P(H). The Bayesian

theorem provides a way of calculating the posterior probability P(H|X) using probabilities P(H),

P(X), and P(X|H). The basic relation is:

𝑃(𝐻|𝑋) =
𝑃(𝑋|𝐻) × 𝑃(𝐻)

𝑃(𝑋)

Or, the probability that an event H occurs given that another event X has already occurred is equal

to the probability that the event X occurs given H has already occurred multiplied by probability

that event H occurs divided by probability of occurrence of X.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 17

For example, suppose our world of data tuples is confined to customers described by the attributes

age and income, and that X is a 35-year-old customer with an income of $40,000. Suppose that H

is the hypothesis that our customer will buy a computer. Then,

P(H|X) → the probability that customer X will buy a computer given that we know the customer’s

age and income. It is the posterior probability, or a posteriori probability, of H conditioned on X

P(X|H) → the probability that a customer, X, is 35 years old and earns $40,000, given that we

know the customer will buy a computer. It is the posterior probability of X conditioned on H.

P(H) → the probability that any given customer will buy a computer, regardless of age, income,

or any other information. It is the prior probability, or a priori probability, of H.

P(X) → the probability that a person from our set of customers is 35 years old and earns $40,000.

It is the prior probability of X.

Naïve Bayesian Classification

Let D be a training set of tuples and their associated class labels.

Given a tuple, X, the classifier will predict that X belongs to the class having the highest posterior

probability, conditioned on X. That is, the naïve Bayesian classifier predicts that tuple X belongs

to the class Ci if and only if

P(Ci|X) > P(Cj|X) for 1 ≤ j ≤m, j ≠ i

Where,

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖) × 𝑃(𝐶𝑖)

𝑃(𝑋)

Here, P(X) is constant for all classes. So, only P(X|Ci) × P(Ci) needs to be maximized.

It would be extremely computationally expensive to compute P(X|Ci). In order to reduce

computation in evaluating P(X|Ci), the naïve assumption of class conditional independence is

made. This presumes that the values of the attributes are conditionally independent of one another,

given the class label of the tuple (i.e., that there are no dependence relationships among the

attributes). Thus,

𝑃(𝑋|𝐶𝑖) = ∏ 𝑃(𝑋𝑘|𝐶𝑖)

𝑛

𝑘=1

 = 𝑃(𝑋1|𝐶𝑖) × 𝑃(𝑋2|𝐶𝑖) × 𝑃(𝑋3|𝐶𝑖) × ⋯ 𝑃(𝑋𝑛|𝐶𝑖)

For example,

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 18

ID Age Income Student Credit_Rating Buy_Computer?

1 Youth High No Fair No

2 Youth High No Excellent No

3 Middle_aged High No Fair Yes

4 Senior Medium No Fair Yes

5 Senior Low Yes Fair Yes

6 Senior Low Yes Excellent No

7 Middle_aged Low Yes Excellent Yes

8 Youth Medium No Fair No

9 Youth Low Yes Fair Yes

10 Senior Medium Yes Fair Yes

11 Youth Medium Yes Excellent Yes

12 Middle_aged Medium No Excellent Yes

13 Middle_aged High Yes Fair Yes

14 Senior Medium No Excellent No

Table 2: Buys_Computer data

Test data: X:(Age=Youth, Income=Medium, Student=Yes, Credit_Rating=Fair)

Let C1: Buys_Computer=Yes

 C2: Buys_Computer=No

So,

 P(C1)=P(Buys_Computer=Yes) = 9/14 = 0.643

 P(C2)=P(Buys_Computer=No) = 5/14 = 0.357

To compute, 𝑃(𝑋|𝐶𝑖) for i=1,2 we first compute following conditional probabilities:

P(Age = Youth | Buys_Computer = Yes) = 2/9 = 0.222

P(Age = Youth | Buys_Computer = No) = 3/5 = 0.600

P(Income = Medium | Buys_Computer = Yes) = 4/9 = 0.444

P(Income = Medium | Buys_Computer = No) = 2/5 = 0.400

P(Student = Yes | Buys_Computer = Yes) = 6/9 = 0.667

P(Student = Yes | Buys_Computer = No) = 1/5 = 0.200

P(Credit_Rating = Fair | Buys_Computer = Yes) = 6/9 = 0.667

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 19

P(Credit_Rating = Fair | Buys_Computer = No) = 2/5 = 0.400

Hence,

P(X|C1)=P(X| Buys_Computer=Yes)= P(Age = Youth | Buys_Computer = Yes) ×

 P(Income = Medium | Buys_Computer = Yes) ×

 P(Student = Yes | Buys_Computer = Yes) ×

 P(Credit_Rating = Fair | Buys_Computer = Yes)

 = 0.222 × 0.444 × 0.667 × 0.667

 = 0.044

P(X|C2)=P(X| Buys_Computer=No) = P(Age = Youth | Buys_Computer = No) ×

 P(Income = Medium | Buys_Computer = No) ×

 P(Student = Yes | Buys_Computer = No) ×

 P(Credit_Rating = Fair | Buys_Computer = No)

 = 0.600 × 0.400 × 0.200 × 0.400

 = 0.019

To find class Ci that maximizes P(X|Ci)P(Ci), we compute,

P(X| Buys_Computer=Yes) ×P(Buys_Computer=Yes)=0.444×0.643=0.028

P(X| Buys_Computer=No) ×P(Buys_Computer=No)=0.019×0.357=0.007

Therefore Naïve Bayesian Classifier classifies

 X:(Age=Youth, Income=Medium, Student=Yes, Credit_Rating=Fair)

 as class Buys_Computer=Yes

3.6 Artificial Neural Network Classifier

An Artificial Neural Network is an abstract computational model of the human brain. The human

brain has an estimated 1011 tiny units called neurons. These neurons are interconnected with an

estimated 1015 links. Similar to the brain, an ANN is composed of artificial neurons (or processing

units) and interconnections. When we view such a network as a graph, neurons can be represented

as nodes (or vertices) and interconnections as edges. Although the term ANN is most commonly

used, other names include “neural network”, parallel distributed processing (PDP) system,

connectionist model, and distributed adaptive system. ANNs are also referred to in the literature

as neurocomputers.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 20

An Artificial Neural Network (ANN) is a massive parallel distributed processor made up of simple

processing units. It has the ability to learn experiential knowledge expressed through interunit

connection strengths, and can make such knowledge available for use.

ANN represents a very basic level to imitate the type of nonlinear learning that occurs in the nature.

The inputs (x) are collected from upstream neurons (or the data set) and combined through a

combination function such as summation (Σ), which is then input into a (usually nonlinear)

activation function to produce an output response (y), which is then channeled downstream to other

neurons.

Backpropagation learns by iteratively processing a data set of training tuples, comparing the

network’s prediction for each tuple with the actual known target value. For each training tuple,

the weights are modified so as to minimize the mean squared error between the network’s

prediction and the actual target value. These modifications are made in the “backwards” direction,

that is, from the output layer, through each hidden layer down to the first hidden layer (hence the

name backpropagation). Although it is not guaranteed, in general the weights will eventually

converge, and the learning process stops.

Before training the network topology must be designed by:

i. Specifying number of input nodes/units: Depends upon number of independent variable in data

set.

ii. Specifying Number of hidden layers: Generally only one layer is considered in most of the

problem. Two layers can be designed for complex problem. Number of nodes in the hidden

layer can be adjusted iteratively.

iii. Number of output nodes/units: Depends upon number of class labels of the data set.

iv. Learning rate: Can be adjusted iteratively.

v. Learning algorithm: Any appropriate learning algorithm can be selected during training phase.

vi. Bias value: Can be adjusted iteratively.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 21

Algorithm

1. Initialize the weight and inputs

2. Calculate the outputs as

For input layer j, 𝑂𝑗 = 𝐼𝑗

For output and hidden layer,

𝐼𝑗 = ∑ 𝑊𝑖𝑗𝑂𝑖

𝑂𝑗 =
1

1 + 𝑒−𝐼𝑗

3. Calculate the error as

For output layer

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗)(𝑇 − 𝑂𝑗)

For hidden layer

𝐸𝑟𝑟𝑗 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝐸𝑟𝑟𝑘

𝑘

𝑊𝑗𝑘

4. Update the weights

𝑊𝑖𝑗(𝑛𝑒𝑤) = 𝑊𝑖𝑗(𝑂𝑙𝑑) + ∆𝑊𝑖𝑗

Where,

∆𝑊𝑖𝑗 = (𝑙)𝐸𝑟𝑟𝑗𝑂𝑖

Where, 𝑙 is the learning rate.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 22

Advantages

i. High tolerance of noisy data

ii. Classify patterns on which they have not been trained

iii. Can be used in various applications such as handwriting recognition, image classification, text

narration etc.

iv. Parallelization can be implemented

Disadvantages

i. Require long training time

ii. Requires number of parameters whose best value is unknown

iii. Difficulty to interpret the meaning of weights and hidden network

3.7 Issues: Overfitting, Validation and Model Comparison

Overfitting

Overfitting refers to a model that models the training data too well. Overfitting occurs when a

statistical model describes random error or noise instead of the underlying relationship. This means

that the noise or random fluctuations in the training data is picked up and learned as concepts by

the model. The problem is that these concepts do not apply to new data and negatively impact the

models ability to generalize.

Overfitting generally occurs when a model is excessively complex, such as having too many

parameters relative to the number of observations. A model which has been overfit will generally

have poor predictive performance. In order to avoid Overfitting, it is necessary to use additional

techniques (e.g. cross validation, pruning (Pre or Post), model comparison etc.

Reason

- Noise in training data.

- Incomplete training data.

- Flaw in assumed theory

Underfitting:

It refers to a model that can neither model the training data nor generalize to new data. An underfit

machine learning model is not a suitable model and will be obvious as it will have poor

performance on the training data. Underfitting is often not discussed as it is easy to detect given a

good performance metric. The remedy is to move on and try alternate machine learning algorithms.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 23

How to Limit Overfitting

Both Overfitting and underfitting can lead to poor model performance. But by far the most

common problem in applied machine learning is overfitting.

Overfitting is such a problem because the evaluation of machine learning algorithms on training

data is different from the evaluation we actually care the most about, namely how well the

algorithm performs on unseen data.

There are two important techniques that you can use when evaluating machine learning algorithms

to limit overfitting:

 Use a resampling technique to estimate model accuracy.

 Hold back a validation dataset.

Validation

Validation is the process of evaluating the model using the training dataset. It is done by a

resampling techinique called cross validation

Cross validation (The holdout method)

Datasets can be categorized into three types: the training data, the validation data, and the test

data. The training data is used by one or more learning methods to come up with classifiers. The

validation data is used to optimize parameters of those classifiers, or to select a particular one.

Then the test data is used to calculate the error rate of the final, optimized, method.

The real problem occurs when there is not a vast supply of data available. In many situations the

training data must be classified manually—and so must the test data, of course, to obtain error

estimates. This limits the amount of data that can be used for training, validation, and testing, and

the problem becomes how to make the most of a limited dataset. From this dataset, a certain

amount is held over for testing—this is called the holdout procedure—and the remainder is used

for training (and, if necessary, part of that is set aside for validation).

k-fold cross-validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually exclusive

subsets or “folds,” D1, D2 . . . , Dk, each of approximately equal size. Training and testing is

performed k times. In iteration i, partition Di is reserved as the test set, and the remaining partitions

are collectively used to train the model. That is, in the first iteration, subsets D2, . . . , Dk collectively

serve as the training set in order to obtain a first model, which is tested on D1; the second iteration

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 24

is trained on subsets D1, D3, . . . , Dk and tested on D2; and so on. Unlike the holdout and random

subsampling methods above, here, each sample is used the same number of times for training and

once for testing. For classification, the accuracy estimate is the overall number of correct

classifications from the k iterations, divided by the total number of tuples in the initial data.

Model Comparison

Models can be evaluated based on the output using different method:

i. Confusion Matrix

ii. ROC Analysis

Confusion Matrix

A confusion matrix, sometimes called a classification matrix, is used to assess the prediction

accuracy of a model. It measures whether a model is confused or not, that is, whether the model is

making mistakes in its predictions or not.

Figure 2. k-fold Cross Validation

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 25

In the two-class case with classes yes and no, buys computer or not, plays golf or not and so on, a

single prediction has the four different possible outcomes shown in Table 3. Given m classes, a

confusion matrix is a table of at least size m by m. An entry, CMi, j in the first m rows and m columns

indicates the number of tuples of class i that were labeled by the classifier as class j.

Table 3: Confusion Matrix

True positive (TP) refer to the positive tuples that were correctly labeled by the classifier.

True Negative (TN) are the negative tuples that were correctly labeled by the classifier.

A false positive (FP) occurs when the outcome is incorrectly predicted as yes (or positive) when

it is actually no (negative). e.g., tuples of class buys_computer = no for which the classifier

predicted buys_computer = yes

A false negative (FN) occurs when the outcome is incorrectly predicted as negative when it is

actually positive. e.g., tuples of class buys_computer = yes for which the classifier predicted

buys_computer = no

Accuracy is not always the best measure of the quality of the classification model. It is especially

true for the real - world problems where the distribution of classes is unbalanced. For example, if

the problem is classification of healthy persons from those with the disease. In many cases the

medical database for training and testing will contain mostly healthy persons (99%), and only

small percentage of people with disease (about 1%). In that case, no matter how good the accuracy

of a model is estimated to be, there is no guarantee that it reflects the real world. Therefore, we

need other measures for model quality. In practice, several measures are developed, and some of

the best known are as follows:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁

 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑃+𝑁

 Predicted Class

Actual Class

 Yes No Total

Yes True Positive True Negative P

No False Positive False Negative N

Total P’ N’ P+N

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 26

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁

---Refer notes for example---

ROC Analysis

ROC curves are a useful visual tool for comparing two classification models. The name ROC

stands for Receiver Operating Characteristic. A ROC curve shows the trade-off between the true

positive rate or sensitivity (proportion of positive tuples that are correctly identified) and the false-

positive rate (proportion of negative tuples that are incorrectly identified as positive) for a given

model. That is, given a two-class problem, it allows us to visualize the trade-off between the rate

at which the model can accurately recognize ‘yes’ cases versus the rate at which it mistakenly

identifies ‘no’ cases as ‘yes’ for different “portions” of the test set. Any increase in the true positive

rate occurs at the cost of an increase in the false-positive rate. The area under the ROC curve is a

measure of the accuracy of the model. A typical example is a diagnostic process in medicine, where

it is necessary to classify the patient as being with or without disease. For these types of problems,

two different yet related error rates are of interest. The False Acceptance Rate (FAR) is the ratio

of the number of test cases that are incorrectly “accepted” by a given model to the total number of

cases. For example, in medical diagnostics, these are the cases in which the patient is wrongly

predicted as having a disease. On the other hand, the False Reject Rate (FRR) is the ratio of the

number of test cases that are incorrectly “rejected” by a given model to the total number of cases.

In order to plot an ROC curve for a given classification model, M, the model must be able to return

a probability or ranking for the predicted class of each test tuple. That is, we need to rank the test

tuples in decreasing order, where the one the classifier thinks is most likely to belong to the positive

or ‘yes’ class appears at the top of the list. The vertical axis of an ROC curve represents the true

positive rate. The horizontal axis represents the false-positive rate. An ROC curve for M is plotted

as follows. Starting at the bottom left-hand corner (where the true positive rate and false-positive

rate are both 0), we check the actual class label of the tuple at the top of the list. If we have a true

positive (that is, a positive tuple that was correctly classified), then on the ROC curve, we move

up and plot a point. If, instead, the tuple really belongs to the ‘no’ class, we have a false positive.

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 27

On the ROC curve, we move right and plot a point. This process is repeated for each of the test

tuples, each time moving up on the curve for a true positive or toward the right for a false positive.

To assess the accuracy of a model, we can measure the area under the curve. The closer the area

is to 0.5, the less accurate the corresponding model is. A model with perfect accuracy will have an

area of 1.0.

Figure 3 A sample ROC curve

https://genuinenotes.com

Data Mining and Data Warehousing Unit 3: Classification

Arjun Lamichhane 28

References

[1] D. T. LAROSE, DISCOVERING KNOWLEDGE IN DATA An Introduction to Data Mining,

New Jersey: John Wiley & Sons, Inc., 2005.

[2] J. Han and K. Micheline, Data Mining: Concepts and Techniques, San Francisco: Elsevier

Inc., 2006.

[3] P.-N. Tan, M. Steinbach and V. Kumar, INTRODUCTION TO DATA MINING, New York:

PEARSON Addison Wesley, 2006.

[4] S. Chakrabarti, E. Cox, E. Frank, R. H. Guting, j. Han, X. Jiang and M. Kamber, Data Mining

know It All, Burlington: Elsevier Inc, 2009.

[5] I. H. Witten and E. Frank, Data Mining Practical Machine Learning Tools and Techniques.

https://genuinenotes.com

