
Unit 4

Memory Management

Nipun Thapa (OS/Unit 4) 1

https://genuinenotes.com

Introduction
 During execution, programs and data must be in main memory (at least

partially).

 Furthermore, to improve both utilization of the CPU and speed of its
response to users, the computer system must keep several processes in
memory; that is, we must share memory.

 Since main memory is usually too small to accommodate all the data and
programs permanently, the computer system must provide secondary
storage to back up main memory.

 Memory management is the act of managing computer
memory.

 This involves providing ways to allocate portions of memory to
programs at request, and freeing it for reuse when no longer needed.

 The management of main memory is critical to the computer system.

Nipun Thapa (OS/Unit 4) 2

https://genuinenotes.com

Introduction

Nipun Thapa (OS/Unit 4) 3

https://genuinenotes.com

Types of Memory:

Nipun Thapa (OS/Unit 4) 4

Primary Memory (eg. RAM)

 Holds data and programs used by a process that is executing

 Type of memory that a CPU deals with directly.

Secondary Memory (eg. hard disk)

 Non-volatile memory used to store data when a process is

not executing.

https://genuinenotes.com

Memory Management Basics

Nipun Thapa (OS/Unit 4) 5

 Don’t have infinite RAM

 Do have a memory hierarchy

Cache (fast)

Main(medium)

Disk(slow)

 Memory manager has the job of using this hierarchy to create
an abstraction (illusion) of easily accessible memory

 Two important memory management function:

 Sharing

 Protection

https://genuinenotes.com

Memory Management Basics

Nipun Thapa (OS/Unit 4) 6

 In a uniprogramming system, Main memory is divided

into two parts:

 – one part for the OS

 – one part for the program currently being executed.

 In a multiprogramming system, the user part of the

memory must be further subdivided to accommodate

multiple processes.

 The task of subdivision is carried out dynamically by the

Operating System and is known as Memory Management

https://genuinenotes.com

Monoprogramming Model

Nipun Thapa (OS/Unit 4) 7

 Only one program at a time in main
memory;

 Can use whole of the available memory.

 Since only one program or process resides
in memory at a time, so sharing and
protection is not an issue.

 However, the protection of OS program
from the user code is must otherwise the
system will crash down.

 This protection is done by a special
hardware mechanism such as a dedicated
register, called as a Fence Register. Also
called Limit Register.

https://genuinenotes.com

Monoprogramming Model

Nipun Thapa (OS/Unit 4) 8

 The Fence Register is set to highest address occupied by the

OS code.

 A memory address generated by user program to access

certain memory location is first compared with the fence

register’s content.

 If the address generated is below the fence, it will be trapped

and denied permission.

 Since the modification of fence register is considered as a

privileged operation, therefore, only OS is allowed to make

any changes to it.

https://genuinenotes.com

Address Binding (Relocation)

Nipun Thapa (OS/Unit 4) 9

 A program has to go through these three phases:

 Compilation, Loading and Execution

 The problem that arises is that where should an OS store the
results of programs after execution.

 A user specifies in his instruction where to store the result.

 i.e. x=(a+b)× (a-c)

 Such address given by the user, like x, are called symbolic or
logical address.

 These addresses need to be mapped to real physical addresses
in memory.

 The mechanism is called address binding.

https://genuinenotes.com

Logical versus Physical Address Space

Nipun Thapa (OS/Unit 4) 10

 An address generated by the CPU is commonly referred to as
a logical address, whereas

 An address seen by the memory unit is commonly referred to
as a physical address.

 The set of all logical addresses generated by a program is
referred to as a logical address space;

 The set of all physical addresses corresponding to these
logical addresses is referred to as a physical address space.

 The run-time mapping from virtual (logical) to physical
addresses is done by the memory management unit
(MMU), which is a hardware device.

https://genuinenotes.com

Program Relocation

Nipun Thapa (OS/Unit 4) 11

 Relocation is a mechanism to convert the logical address into

a physical address.

 To do this, there is a special register in CPU called relocation

register (also known as base register).

 Every address used in the program is relocated as:

effective physical address= Logical address + Contents of

Relocation register

 MMU is a special hardware which performs address binding,

uses relocation scheme.

https://genuinenotes.com

Memory Management Unit (MMU)

Nipun Thapa (OS/Unit 4) 12

 MMU generates physical address from virtual address

provided by the program by adding the virtual address to the

address of relocation register.

 MMU maps virtual addresses to physical addresses and puts

them on memory bus

https://genuinenotes.com

Two basic types of relocation:

Nipun Thapa (OS/Unit 4) 13

Static Relocation:

 Formed during the loading of the program into memory by a

loader.

Dynamic Relocation:

 mapping from the virtual address space to physical address is

performed at execution time.

https://genuinenotes.com

Protection

Nipun Thapa (OS/Unit 4) 14

 Providing security from unauthorized usage of memory.

 OS can protect the memory with the help of base and limit

registers.

 Base register consist of the starting address of the next process,

 The limit register specifies the boundary of that job.

 That is why the limit register is also called a fencing register.

 Fig: Hardware protection mechanism

https://genuinenotes.com

Memory Allocation Techniques

Nipun Thapa (OS/Unit 4) 15

Two types:

Contiguous Storage Allocation

 Fixed Partition Allocation

 Variable Partition Allocation

Non-Contiguous

 Paging

 Segmentation

https://genuinenotes.com

Contiguous Storage Allocation

Nipun Thapa (OS/Unit 4) 16

 Main memory must accommodate both the operating system and
the user processes

 Main memory is usually divided into two partitions:

 o Resident operating system, usually held in low memory

 o User processes then held in high memory

 In this case memory protection must be done.

 Memory protection means protecting the operating system from user
processes and protecting user processes form one another.

 Memory protection can be done by using relocation register.

 Relocation registers (base register) used to protect user processes
from each other, and from changing operating-system code and
data.

https://genuinenotes.com

Contiguous Storage Allocation

Nipun Thapa (OS/Unit 4) 17

 Base register contains value of smallest physical address.

 Limit register contains range of logical addresses – each
logical address must be less than the limit register.

 MMU maps logical address to physical address dynamically

 A memory resident program occupies a single contiguous
block of physical memory.

 The memory is partitioned into block of different sizes to
accommodate the programs.

 The partitioning may be:

 o Fixed Partition allocation

 o Variable Partition allocation

https://genuinenotes.com

Fixed Partition allocation/Multiprogramming

with fixed partition

Nipun Thapa (OS/Unit 4) 18

 In multiprogramming environment, several programs reside in
primary memory at a time and the CPU passes its control rapidly
between these programs.

 One way to support multiprogramming is to divide the main
memory into several partitions each of which is allocated to a
single process.

Placement Algorithm with fixed Partitions

 Any process whose size is less than or equal to the partition size
can be loaded into an available partition

 If all partitions are full, the operating system can swap a process
out of a partition.

 A program may not fit in a partition. The programmer must
design the program with overlays.

https://genuinenotes.com

overlays

Nipun Thapa (OS/Unit 4) 19

 The size of a process is limited to the size of physical

memory.

 Process can be larger than the amount of memory allocated

to it, a technique called overlays is sometimes used.

 The idea of overlays is to keep in memory only those

instructions and data that are needed at any given time.

 When other instructions are needed, they are loaded into

space that was occupied previously by instructions i.e.

replacing those instructions that are no longer needed.

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 20

 Let us consider an example of overlays,

 Pass1 70K

 Pass 2 80K

 Symbol table 20K

 Common routines 30K

 To load everything at once, we would require 200K of memory.

 If only 150K is available, we cannot run our process.

 But pass 1 and pass 2 do not need to be in memory at the same

time.

 We thus define two overlays:

 Overlay A is the symbol table, common routines, and pass 1, and

overlay B is the symbol table, common routines, and pass 2.

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 21

Equal-size fixed partitions

 Because all partitions are of equal size, it does not matter

which partition is used.

Unequal-size fixed partitions

 Can assign each process to the smallest partition within

which it will fit.

 Processes are assigned in such a way as to minimize wasted

memory within a partition.

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 22

Fixed partitioning Implemented in two ways:

- Dedicated partition for each process (Absolute translation)

- Maintaining a single queue (Relocatable translation)

Absolute Translation (Maintaining multiple input
queues):

 In this scheme, separate input queue is maintained for each
partition.

 When a process arrives it is put into the input queue for the
smallest partition large enough to hold it.

Problem:

 If a process is ready to run and its partition is occupied then that
process has to wait even if other partitions are available i.e.
wastage of storage.

https://genuinenotes.com

Relocatable Translation (Maintaining a

single queue):

Nipun Thapa (OS/Unit 4) 23

 Another strategy is to maintain a single queue for all partitions
whenever a partition becomes free, the job closest to the front of
the queue that fits in it could be loaded into the empty partition
and run.

 Since it is undesirable to waste a large partition on a small job, a
different strategy is to search the whole input queue whenever a
partition becomes free and pick the largest job that fits.

 But this algorithm discriminates against small jobs as being
unworthy of having a whole partition.

Problem:

 Eliminate the absolute problems but implementation is complex.

 Wastage of storage when many processes are small.

https://genuinenotes.com

Relocatable Translation (Maintaining a

single queue):

Nipun Thapa (OS/Unit 4) 24

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 25

Advantages of fixed partition

 Implementation of this allocation scheme is simple.

 It supports multiprogramming.

Disadvantages of fixed partitioning

 No single program (process) may exceed the size of the largest

partition in a given system.

 The Main memory use is inefficient. Any program, no matter

how small, occupies an entire partition. This is called internal

fragmentation.

 Not suitable for systems in which process memory requirements

not known ahead of time; i.e. timesharing systems.

https://genuinenotes.com

Multiprogramming with Variable

Partitions

Nipun Thapa (OS/Unit 4) 26

 To overcome some of the difficulties with fixed partitioning,

an approach known as dynamic partitioning was developed.

 The partitions are of variable length and number.

 When a process is brought into main memory, it is allocated

exactly as much memory as it requires and no more.

 An example, using 64 Mbytes of main memory, is shown in

Figure

https://genuinenotes.com

Coalescing vs Compaction

Nipun Thapa (OS/Unit 4) 27

https://genuinenotes.com

Coalescing vs Compaction

Nipun Thapa (OS/Unit 4) 28

https://genuinenotes.com

Coalescing vs Compaction

Nipun Thapa (OS/Unit 4) 29

 Eventually it leads to a situation in which there are a lot of small holes in
memory.

 As time goes on, memory becomes more and more fragmented, and
memory utilization declines.

 This phenomenon is referred to as external fragmentation, indicating
that the memory becomes increasingly fragmented as shown in the
above figure.

 In the above figure let us say that a process of size greater then 7M arise
but this process cannot be allocated into the memory though there is
availability of the memory in total is 6+6+4=16M.

 Following two activities should be taken place, to reduce wastage of
memory:

(a) Coalescing

(b) Compaction

https://genuinenotes.com

Coalescing vs Compaction

Nipun Thapa (OS/Unit 4) 30

a) Coalescing

 The process of merging two adjacent holes to form a single

larger hole is called coalescing.

b) Compaction

 Even when holes are coalesced, no individual hole may be

large enough to hold the job, although the sum of holes is

larger than the storage required for a process.

 It is possible to combine all the holes into single big unit by

moving all the processes downward as far as possible; this

technique is called memory compaction.

https://genuinenotes.com

Coalescing vs Compaction

Nipun Thapa (OS/Unit 4) 31

(a) Coalescing (b) Compaction

https://genuinenotes.com

Fixed vs. Variable Partitioning

Nipun Thapa (OS/Unit 4) 32

https://genuinenotes.com

Memory Management with Bitmaps:

Nipun Thapa (OS/Unit 4) 33

 When memory is assigned dynamically, the operating system must

manage it.

 With a bitmap, memory is divided up into allocation units,

perhaps as small as a few words and perhaps as large as several

kilobytes.

 Corresponding to each allocation unit is a bit in the bitmap, which

is 0 if the unit is free and 1 if it is occupied (or vice versa).

 Figure below shows part of memory and the corresponding

bitmap.

 The size of the allocation unit is an important design issue.

 The smaller the allocation unit, the larger the bitmap.

https://genuinenotes.com

Memory Management with Bitmaps:

Nipun Thapa (OS/Unit 4) 34

https://genuinenotes.com

Memory Management with Bitmaps:

Nipun Thapa (OS/Unit 4) 35

Advantage

 A bitmap provides a simple way to keep track of memory words in

a fixed amount of memory because the size of the bitmap depends

only on the size of memory and the size of the allocation unit.

Disadvantage

 The main problem with it is that when it has been decided to bring

a k unit process into memory, the memory manager must search

the bitmap to find a run of k consecutive 0 bits in the map.

 Searching a bitmap for a run of a given length is a slow operation.

https://genuinenotes.com

Memory Management with Linked Lists

Nipun Thapa (OS/Unit 4) 36

 Another way of keeping track of memory is to maintain a
linked list of allocated and free memory segments,

 Where a segment is either a process or a hole between two
processes.

 Each entry in the list specifies a hole (H) or process (P), the
address at which it starts, the length, and a pointer to the
next entry.

 In this example, the segment list is kept sorted by address.

 Sorting this way has the advantage that when a process
terminates or is swapped out, updating the list is
straightforward.

https://genuinenotes.com

Memory Management with Linked Lists

Nipun Thapa (OS/Unit 4) 37

https://genuinenotes.com

Memory Management with Linked Lists

Nipun Thapa (OS/Unit 4) 38

 A terminating process normally has two neighbors (except when it

is at the very top or very bottom of memory).

 These may be either processes or holes, leading to the four

combinations shown in fig

Fig: Four neighbor combinations for the terminating process, X.

https://genuinenotes.com

Partition Selection Algorithms:

Nipun Thapa (OS/Unit 4) 39

 When the processes and holes are kept on a list sorted by address,
several algorithms can be used to allocate memory for a newly created
process (or an existing process being swapped in from disk).

 We assume that the memory manager knows how much memory to
allocate.

1. First fit:

 The memory manager allocates the first hole that is big enough.

 It stops the searching as soon as it finds a free hole that is large enough.

 The hole is then broken up into two pieces, one for the process and one
for unused memory.

Advantages: it is a fast algorithm because it searches as little as possible.

Disadvantages: not good in terms of storage utilization.

https://genuinenotes.com

Partition Selection Algorithms:

Nipun Thapa (OS/Unit 4) 40

2.Next Fit:

 It works the same way as first fit, except that it keeps track of where it is
whenever it finds a suitable hole.

 The next time it is called to find a hole, it starts searching the list from the place
where it left off last time, instead of always at the beginning, as first fit does.

3. Best fit:

 Allocate the smallest hole that is big enough.

 Best fit searches the entire list and takes the smallest hole that is big enough to
hold the new process.

 Best fit try to find a hole that is close to the actual size needed.

Advantages: more storage utilization than first fit.

Disadvantages:

 slower than first fit because it requires searching whole list at time.

 Creates a tiny hole that may not be used.

https://genuinenotes.com

Partition Selection Algorithms:

Nipun Thapa (OS/Unit 4) 41

4. Worst fit:

 Allocate the largest hole.

 It search the entire list, and takes the largest hole, rather than

creating a tinny hole it produces the largest leftover hole,

which may be more useful.

Advantages:

 some time it has more storage utilization than first fit and

best fit.

Disadvantages:

 not good for both performance and utilization.

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 42

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 43

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 44

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 45

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 46

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 47

https://genuinenotes.com

Memory Management with Buddy-

system:

Nipun Thapa (OS/Unit 4) 48

 Both fixed and dynamic partitioning schemes have drawbacks.

 A fixed partitioning scheme limits the number of active processes
and may use space inefficiently if there is a poor match between
available partition sizes and process sizes.

 A dynamic partitioning scheme is more complex to maintain and
includes the overhead of compaction.

 An interesting compromise is the buddy system .

 In a buddy system, memory blocks are available of size 2K words,
L≤K≤ U, where,

 2L = smallest size block that is allocated

 2U =largest size block that is allocated; generally 2U is the size of
the entire memory available for allocation.

https://genuinenotes.com

Memory Management with Buddy-

system:

Nipun Thapa (OS/Unit 4) 49

 In a buddy system, the entire memory space available for allocation is
initially treated as a single block whose size is a power of 2.

 When the first request is made, if its size is greater than half of the initial
block then the entire block is allocated.

 Otherwise, the block is split in two equal companion buddies.

 If the size of the request is greater than half of one of the buddies, then
allocate one to it.

 Otherwise, one of the buddies is split in half again.

 This method continues until the smallest block greater than or equal to
the size of the request is found and allocated to it.

 In this method, when a process terminates the buddy block that was
allocated to it is freed.

 Whenever possible, an unallocated buddy is merged with a companion
buddy in order to form a larger free block.

https://genuinenotes.com

Memory Management with Buddy-

system:

Nipun Thapa (OS/Unit 4) 50

 Two blocks are said to be companion buddies if they resulted from the split of the

same direct parent block.

 The following fig. illustrates the buddy system at work, considering a 1024k (1-

megabyte) initial block and the process requests as shown at the left of the table.

https://genuinenotes.com

Swapping

Nipun Thapa (OS/Unit 4) 51

 If there is not enough main memory to hold all the currently

active processes, the excess processes must be kept on the

disk and brought in to run dynamically.

 Swapping consists of moving processes from main memory

and disk.

 Relocation may be required during swapping.

 Backing store is disk large enough to accommodate copies

of all memory images which provides direct access to these

memory images.

https://genuinenotes.com

Roll out, roll in

Nipun Thapa (OS/Unit 4) 52

 Swapping variant used for priority-based scheduling
algorithms;

 lower-priority process is swapped out so higher-priority
process can be loaded and executed.

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 A process, can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution.

https://genuinenotes.com

Roll out, roll in

Nipun Thapa (OS/Unit 4) 53

https://genuinenotes.com

Roll out, roll in

Nipun Thapa (OS/Unit 4) 54

 A variant of this swapping policy is used for priority-based scheduling
algorithms.

 If a higher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process so that it can load and
execute the higher priority process.

 When the higher priority process finishes, the lower- priority process
can be swapped back in and continued.

 This variant of swapping is sometimes called rollout, roll in.

 A process is swapped out will be swapped back into the same memory
space that it occupies previously.

 If binding is done at assembly or load time, then the process cannot be
moved to different location.

 However, If execution-time binding is being used, then it is possible to
swap a process into a different memory space.

https://genuinenotes.com

Roll out, roll in

Nipun Thapa (OS/Unit 4) 55

 Assume a multiprogramming environment with a round

robin CPU-scheduling algorithm.

 When a quantum expires, the memory manager will start to

swap out the process that just finished, and to swap in

another process to the memory space that has been freed.

 When each process finishes its quantum, it will be swapped

with another process.

 The context-switch time in such a swapping system is fairly

high.

https://genuinenotes.com

Non-contiguous Memory allocation:

Nipun Thapa (OS/Unit 4) 56

 Fragmentation is a main problem in contiguous memory
allocation.

 We have seen a method called compaction to resolve this problem.

 System efficiency gets reduced. So, a better method to overcome
the fragmentation problem is to make our logical address space
noncontiguous.

 Consider a system in which before applying compaction, there are
holes of size 1K and 2K. If a new process of size 3K wants to be
executed then its execution is not possible without compaction.

 An alternative approach is divide the size of new process P into
two chunks of 1K and 2K to be able to load them into two holes at
different places.

https://genuinenotes.com

Non-contiguous Memory allocation:

Nipun Thapa (OS/Unit 4) 57

1. If the chunks have to be of same size for all processes ready
for the execution then the memory management scheme is
called PAGING.

2. If the chunks have to be of different size in which process
image is divided into logical segments of different sizes
then this method is called SEGMENTATION.

3. If the method can work with only some chunks in the main
memory and the remaining on the disk which can be
brought into main memory only when its required, then
the system is called VIRTUAL MEMORY
MANAGEMENT SYSTEM.

https://genuinenotes.com

Virtual memory

Nipun Thapa (OS/Unit 4) 58

 It is desirable to be able to execute a process whose logical address
space is larger than the available physical address space.

 The programmer can make such a process executable by
restructuring it using overlays, but doing so is generally a difficult
programming task.

 Virtual memory is a technique to allow a large logical address
space to be mapped onto a smaller physical memory.

 Virtual memory allows extremely large process to be run, and
also allows the degree of multiprogramming to be raised,
increasing CPU utilization.

 Further, it frees application programmers from worrying about
memory availability.

https://genuinenotes.com

Virtual memory

Nipun Thapa (OS/Unit 4) 59

 The basic idea behind virtual memory is that the combined

size of the program, data, and stack may exceed the amount

of physical memory available for it.

 The operating system keeps those parts of the program

currently in use in main memory, and the rest on the

disk(swap area called virtual memory).

 For example, a 512-MB program can run on a 256-MB

machine by carefully choosing which 256 MB to keep in

memory at each instant, with pieces of the program being

swapped between disk and memory as needed.

https://genuinenotes.com

Virtual memory

Nipun Thapa (OS/Unit 4) 60

 Virtual storage is not a new concept; this concept was

devised by fortherigham in 1961 and used in Atlas computer

system.

 But the common use in OS is the recent concept, all

microprocessor now support virtual memory.

 Virtual memory can be implemented by two most common

used methods:

Paging

Segmentation

Or mixed strategy of both.

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 61

 Most virtual system uses a techniques called paging that permits

the physical address space of a process to be non-contiguous.

 Program-generated addresses are called virtual addresses and

form the virtual address space.

 When virtual memory is used, the virtual addresses requested by

cpu do not go directly to the memory bus.

 Instead, they go to an MMU (Memory Management Unit) that

maps the virtual addresses onto the physical memory addresses as

illustrated in Fig

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 62

 The basic method for implementing paging involves breaking physical memory

into fixed size block called frames and breaking logical memory into blocks of

the same size called pages.

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 63

 A very simple example of how this mapping works is shown
in Fig. below.

 In this example, we have a computer that can generate 16-bit
addresses, from 0 up to 64K. These are the virtual addresses.

 This computer, however, has only 32 KB of physical memory,
so although 64-KB programs can be written, they cannot be
loaded into memory in their entirety and run.

 With 64 KB of virtual address space and 32 KB of physical
memory, we get 16(64/4KB, since page frame size is
typically of 4KB) virtual pages and 8 page frames. Transfers
between RAM and disk are always in units of a page.

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 64

Fig:The relation between virtual addresses and physical memory addresses.

• When the program tries to access

address 0 (see the virtual address

space), for example, using the

instruction MOV REG,0

• virtual address 0 is sent to the

MMU.

• The MMU sees in page table that

this virtual address falls in page 0

(0 to 4095), which according to its

mapping is page frame 2 (8192 to

12287 in the physical address).

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 65

• It thus transforms the address to

8192 and outputs address 8192

onto the bus.

• The memory knows nothing at all

about the MMU and just sees a

request for reading or writing

address 8192, which it honors.

• Thus, the MMU has effectively

mapped all virtual addresses

between 0 and 4095 onto

physical addresses 8192 to

12287.

https://genuinenotes.com

Paging

Nipun Thapa (OS/Unit 4) 66

Similarly, an instruction MOV REG, 8192

is effectively transformed into MOV

REG,24576.

Because virtual address 8192 is in virtual

page 2 and this page is mapped onto

physical page frame 6 (physical addresses

24576 to 28671).

• As a third example, virtual address

20500 is 20 bytes from the start of

virtual page 5 (virtual addresses

20480 to 24575) and maps onto

physical address 12288 + 20 =

12308.

https://genuinenotes.com

PAGE Fault:

Nipun Thapa (OS/Unit 4) 67

 A page fault is a trap to the software raised by the hardware
when a program accesses a page that is mapped in the virtual
address space, but not loaded in physical memory.

 In the typical case the operating system tries to handle the page
fault by making the required page accessible at a location in
physical memory or kills the program in the case of an illegal
access.

 The hardware that detects a page fault is the memory management
unit in a processor.

 The exception handling software that handles the page fault is
generally part of the operating system.

 What happens if the program tries to use an unmapped page, for
example, by using the instruction MOV REG,32780

https://genuinenotes.com

PAGE Fault:

Nipun Thapa (OS/Unit 4) 68

• Which is within virtual page 8

(starting at 32768)

• The MMU notices that the page

is unmapped (indicated by a

cross in the figure) and causes

the CPU to trap to the operating

system. This trap is called a

page fault.

• The operating system picks a

little-used page frame and

writes its contents back to the

disk.

• It then fetches the page just

referenced into the page frame

just freed, changes the map,

and restarts the trapped
instruction.

https://genuinenotes.com

PAGE Fault:

Nipun Thapa (OS/Unit 4) 69

 In computer storage technology, a page is a fixed-length block of
memory that is used as a unit of transfer between physical
memory and external storage like a disk,

 And a page fault is an interrupt (or exception) to the software
raised by the hardware, when a program accesses a page that is
mapped in address space, but not loaded in physical memory.

 An interrupt that occurs when a program requests data that is not
currently in real memory.

 The interrupt triggers the operating system to fetch the data from
a virtual memory and load it into RAM.

 An invalid page fault or page fault error occurs when the operating
system cannot find the data in virtual memory.

 This usually happens when the virtual memory area, or the table
that maps virtual addresses to real addresses, becomes corrupt.

https://genuinenotes.com

Paging Hardware:

Nipun Thapa (OS/Unit 4) 70

 The hardware support for the paging is as shown in fig below.

 Every address generated by the CPU is divided into two parts:

 a page number(p) and a page offset (d)

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory.

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit.

https://genuinenotes.com

Paging Hardware:

Nipun Thapa (OS/Unit 4) 71

https://genuinenotes.com

Page Table

Nipun Thapa (OS/Unit 4) 72

 For each process, page table stores the number of frame,

allocated for each page.

 The purpose of the page table is to map virtual pages into

page frames by the MMU.

 Mathematically the page table is a function with the virtual

page number as argument and the physical frame number as

result.

 Using the result of this function the virtual page field in a

virtual address can be replaced by a page frame field, thus

forming a physical memory address.

https://genuinenotes.com

Page Table

Nipun Thapa (OS/Unit 4) 73

https://genuinenotes.com

Page Translation

Nipun Thapa (OS/Unit 4) 74

https://genuinenotes.com

MMU Address Translation

Nipun Thapa (OS/Unit 4) 75

https://genuinenotes.com

TLB-Assisted Translation

Nipun Thapa (OS/Unit 4) 76

https://genuinenotes.com

TLB-Assisted Translation

Nipun Thapa (OS/Unit 4) 77

 The problem with earlier MMU translation would have caused to

access the memory twice(one for looking of the page table into

the kernel space region in the physical memory and again in the

memory itself after getting the appropriate mapping of the page

into the frame). Which makes slower execution.

 To solve the above problem a different hardware TLB(translation

lookaside buffer) cache is embedded into the CPU. This time

MMU checks first into the TLB if it is found then TLB Hit occurs

and no need to access the memory for getting the page table

information.

 TLB is also called associative memory sometimes.

https://genuinenotes.com

Page Replacement Algorithm

Nipun Thapa (OS/Unit 4) 78

 When a page fault occurs, the operating system has to choose a

page to remove from memory to make room for the page that has

to be brought in.

 The page replacement is done by swapping the required pages

from backup storage to main memory and vice-versa.

 If the page to be removed has been modified while in memory, it

must be rewritten to the disk to bring the disk copy up to date.

 If, however, the page has not been changed (e.g., it contains

program text), the disk copy is already up to date, so no rewrite is

needed.

 The page to be read in just overwrites the page being evicted.

https://genuinenotes.com

Page Replacement Algorithm

Nipun Thapa (OS/Unit 4) 79

 Each operating system uses different page replacement algorithms.

 To select the particular algorithm, the algorithm with lowest page

fault rate is considered.

1. Optimal page replacement algorithm

2. Not recently used page replacement

3. First-In, First-Out page replacement

4. Second chance page replacement

5. Clock page replacement

6. Least recently used page replacement

7. Most frequently used etc.

https://genuinenotes.com

1.Optimal Page Replacement

Nipun Thapa (OS/Unit 4) 80

 The algorithm has lowest page fault rate of all algorithm.

 This algorithm state that: Replace the page which will

not be used for longest period of time i.e future

knowledge of reference string is required.

 Often called Balady's Min Basic idea: Replace the page that

will not be referenced for the longest time.

 Impossible to implement.

https://genuinenotes.com

Q). If we consider reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 and

number of frames allocated =3. Using optimal page replcement algorithm to find

fault number .

Nipun Thapa (OS/Unit 4) 81

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7

0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0

1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

* * * * + * + * + + * + + * + + + * + +

Here : * = Fault

 + = hit

Total number of page fault = 9

 page fault ratio = 9/20 = 0.45

https://genuinenotes.com

2. First In First out Page replacement

algorithm

Nipun Thapa (OS/Unit 4) 82

 The oldest page in the physical memory is the one selected
for replacement.

 Very simple to implement.

 Keep a list on a page fault, the page at the head is removed
and the new page added to the tail of the list.

 When a page must be replaced, the oldest page is chosen

 To determine the number of page faults for a particular
reference string and page replacement algorithm, we also
need to know the number of page frames available.

 As the number of frames available increase, the number of
page faults will decrease.

Issues:

Poor replacement policy

FIFO doesn't consider the page usage.

https://genuinenotes.com

Q). If we consider reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 and

number of frames allocated =3. Using FIFO page replcement algorithm to find fault

number .

Nipun Thapa (OS/Unit 4) 83

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

* * * * + * * * * * * + + * * + + * * *

Here : * = Fault

 + = hit

Total number of page fault = 15

 page fault ratio = 15/20

https://genuinenotes.com

3. LRU Algorithm

Nipun Thapa (OS/Unit 4) 84

 LRU replacement associates with each page the time of that

page's last use.

 When a page must be replaced, LRU chooses that page that

has not been used for the longest period of time.

Counter implementation

 Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter.

 When a page needs to be changed, look at the counters to

determine which are to change.

https://genuinenotes.com

Q). If we consider reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 and

number of frames allocated =3. Using LRU page replcement algorithm to find fault

number .

Nipun Thapa (OS/Unit 4) 85

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0

1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7

* * * * + * + * * * * + + * + * + * + +

Here : * = Fault

 + = hit

Total number of page fault = 12

 page fault ratio = 12/20

https://genuinenotes.com

Comparison of OPT with LRU

Nipun Thapa (OS/Unit 4) 86

A process of 5 pages with an OS that fixes the resident set size to 3

https://genuinenotes.com

Comparison of FIFO with LRU

Nipun Thapa (OS/Unit 4) 87

LRU recognizes that pages 2 and 5 are referenced more frequently than others but FIFO does not.

https://genuinenotes.com

4. The Second Chance Page

Replacement Algorithm:

Nipun Thapa (OS/Unit 4) 88

 A simple modification to FIFO that avoids the problem of

throwing out heavily used page.

 It inspects the reference (R) bit If it is 0, the page is both old and

unused, so it is replaced immediately.

 If the R bit is 1, the bit is cleared, the page is put onto the end of

the list of pages, and its load time is updated as though it had just

arrived in memory. Then the search continues.

 If r=0 then page A

is removed since A

is oldest page

If r=1 then page A is

not removed it gets

second chance

https://genuinenotes.com

Q). If we consider reference string 2,3,2,1,5,2,4,5,3,2,5,2 and number of frames

allocated =3. Using Second chance page replcement algorithm to find fault number

Nipun Thapa (OS/Unit 4) 89

2 3 2 1 5 2 4 5 3 2 5 2

2(0) 2(0) 2(1) 2(1) 2(0) 2(1) 2(0) 2(0) 3(0) 3(0) 3(0) 3(0)

3(0) 3(0) 3(0) 5(0) 5(0) 5(0) 5(1) 5(0) 5(0) 5(1) 5(1)

1(0) 1(0) 1(0) 4(0) 4(0) 4(0) 2(0) 2(0) 2(1)

* * + * * + * + * * + +

Here : * = Fault

 + = hit

Total number of page fault = 7

 page fault ratio = 7/12

https://genuinenotes.com

5.Belady’s Anomaly

Nipun Thapa (OS/Unit 4) 90

 Intuitively, it might seem that the more page frames the

memory has, the fewer page faults a program will get.

 Surprisingly enough, this is not always the case.

 Belady discovered a counter example, in which FIFO caused

more page faults with four page frames than with three.

 This strange situation has become known as Belady’s

anomaly.

 It is illustrated in Fig. for a program with five virtual pages,

numbered from 0 to 4. The pages are referenced in the order

Reference String: 0 1 2 3 0 1 4 0 1 2 3 4

https://genuinenotes.com

5.Belady’s Anomaly

Nipun Thapa (OS/Unit 4) 91

https://genuinenotes.com

Q). If we consider reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 and

number of frames allocated =3. Using Belady’s anomaly FIFO page replcement

algorithm to find fault number .

Nipun Thapa (OS/Unit 4) 92

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7

0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0

1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1

* * * * + * * * * * * + + * * + + * * *

Here : * = Fault

 + = hit

Total number of page fault = 15

 page fault ratio = 15/20

5. Belady’s Anomaly using FIFO https://genuinenotes.com

6.The Clock Page Replacement Algorithm

Nipun Thapa (OS/Unit 4) 93

 Keep all the page frames on a circular list in the form of a

clock, as shown in Fig below.

 A hand points to the oldest page. When a page fault occurs,

the page being pointed to by the hand is inspected.

 If its R bit is 0, the page is evicted, the new page is inserted

into the clock in its place, and the hand is advanced one

position.

 If R is 1, it is cleared and the hand is advanced to the next

page.

 This process is repeated until a page is found with R = 0

https://genuinenotes.com

6.The Clock Page Replacement Algorithm

Nipun Thapa (OS/Unit 4) 94

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 95

Algorithm

1. Begin

2. Read new page, say P

3. If p is available in clock (circular linked list)

3.1. Page hit occurs, then

3.2. Turn reference bit to 1 and do nothing else

4. Else

4.1. Page miss occurs, then

4.2. If its R bit is 0, the page is evicted, the new page is inserted into the
clock in its place, and the hand is advanced one position.

4.3. If R is 1, it is cleared and the hand is advanced to the next page. The
process is repeated until a page is found with R=0.

6.The Clock Page Replacement Algorithm

https://genuinenotes.com

Example:

Input References : {1,2,3,4,3,1,2,1,5,4}

NO. of allocation : 3

Nipun Thapa (OS/Unit 4) 96

1
0

1
0

2
0

1) 1 2) 2

*
*

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 97

1
0

2
0

3
0

4
0

2
0

3
0

3) 3 4) 4

*
*

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 98

4
0

2
0

3
1

4
0

1
0

3
1

5) 3 6) 1

*
+

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 99

2
0

1
0

3
0

2
0

1
1

3
0

7) 2 8) 1

*
+

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 100

2
0

1
0

5
0

4
0

1
0

5
0

9) 5 10) 4

*
*

Total Page fault = 8

https://genuinenotes.com

Segmentation

Nipun Thapa (OS/Unit 4) 101

 A user program can be subdivided using segmentation, in

which the program and its associated data are divided into a

number of segments.

 Segmentation is the Memory management scheme that

supports user view of memory.

 A program is a collection of segments.

 A segment is a logical unit such as: main program,

procedure, function, method, object, local variables, global

variables, common block, stack, symbol table, arrays.

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 102

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 103

https://genuinenotes.com

Segmentation

Nipun Thapa (OS/Unit 4) 104

 It is not required that all segments of all programs be of the same length,
although there is a maximum segment length.

 As with paging, a logical address using segmentation consists of two
parts, in this case a segment number and an offset.

 Because of the use of unequal-size segments, segmentation is similar to
dynamic partitioning.

 In segmentation, a program may occupy more than one partition, and
these partitions need not be contiguous.

 Segmentation eliminates internal fragmentation but, like dynamic
partitioning, it suffers from external fragmentation.

 However, because a process is broken up into a number of smaller
pieces, the external fragmentation should be less.

 Whereas paging is invisible to the programmer, segmentation usually
visible and is provided as a convenience for organizing programs and
data.

https://genuinenotes.com

Segmentation

Nipun Thapa (OS/Unit 4) 105

 When a process enters the Running state, the address of its

segment table is loaded into a special register used by the memory

management hardware.

 A logical address consists of two parts: a segment number, s, and

an offset into the segment, d.

 The segment number is used as an index into the segment table.

 The offset must be between 0 and the segment limit. If the offset

is legal it is added to the segment base to produce the address in

physical memory of the desired byte.

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 106

 The segmentation hardware consists segment table.

 Each entry in the segment table has a segment base and a

segment limit.

 The segment base contains the starting physical address

where the segment resides in memory, whereas the segment

limit specifies the length of the segment.

 The segment table is thus essentially an array of base-limit

register pair.

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 107

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 108

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 109

The following steps are needed for address translation

 Extract the segment number as the leftmost n bits of the logical
address.

 Use the segment number as an index into the process segment
table to find the starting physical address of the segment.

 Compare the offset, expressed in the rightmost m bits, to the
length of the segment.

 If the offset is greater than or equal to the length, the address is
invalid.

 The desired physical address is the sum of the starting physical
address of the segment plus the offset.

 Segmentation and paging can be combined to have a good result.

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 110

https://genuinenotes.com

Segment table

Nipun Thapa (OS/Unit 4) 111

 Like paging, segmentation is also a memory-management
scheme that permits the physical-address space of a process
to be noncontiguous.

 However, in segmentation, segments are of variable length,
whereas pages are all the same size.

 Segmentation may cause external fragmentation, when all
blocks of free memory are too small to accommodate a
segment.

 In this case, the processes may simply have to wait until more
memory (or at least a larger hole) becomes available, or until
compaction creates a larger hole.

https://genuinenotes.com

Implementation of Pure Segmentation

Nipun Thapa (OS/Unit 4) 112

(a)-(d) Development of checkerboarding(external fragmentation).

(e) Removal of the checkerboarding by compaction.

https://genuinenotes.com

Paging Vs Segmentation

Nipun Thapa (OS/Unit 4) 113

https://genuinenotes.com

Segmentation with paging

Nipun Thapa (OS/Unit 4) 114

 Both paging and segmentation have advantages and

disadvantages.

 We can merge these two methods to improve on each.

 This combination is used in Intel 386 (and later) architecture

 If the segments are large, say large enough then the physical

memory it may be inconvenient or even impossible to keep

them in main memory in their entirely.

 This leads to the idea of paging them, so that only those pages

are actually needed have to be in the physical memory.

https://genuinenotes.com

Segmentation with paging

Nipun Thapa (OS/Unit 4) 115

 Segmentation can be combined with paging to provide the

facility of paging with the protection and sharing capabilities

of segmentation.

 As with segmentation, the logical address specifies the

segment and the offsets within the segment.

 When paging is added, the segment offset is further divided

into page number and page offset.

 The segment table entry contains the address of the

segment’s page table.

https://genuinenotes.com

Segmentation with paging

Nipun Thapa (OS/Unit 4) 116

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 117

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 118

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 119

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 120

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 121

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 122

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 123

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 124

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 125

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 126

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 127

https://genuinenotes.com

Nipun Thapa (OS/Unit 4) 128

https://genuinenotes.com

Finished Unit 4

Nipun Thapa (OS/Unit 4) 129

https://genuinenotes.com

