
Unit 3

Process Deadlock

Nipun Thapa (OS/Unit 3) 1

https://genuinenotes.com

Deadlock

Nipun Thapa (OS/Unit 3) 2

https://genuinenotes.com

Resources

 Resources are the passive entities needed by

processes to do their work.

 A resource can be:

Hardware device (e.g. A tape drive)

Piece of information(e.g. A locked record in

database)

 Example of resources include CPU time, disk space,

memory etc.

Nipun Thapa (OS/Unit 3) 3

https://genuinenotes.com

There are two types of resources:

(a) Preemptable resource

That can be taken away from the process owing it with no ill effects.

Example: memory

(b) Non-preemptable resource

That can not be taken away from its current owner without causing the

computation to fail.

Example: CD recorders

The sequence of events required to use a resource is:

1. Request the resource

2. Use the resource

3. Release the resource

Resources

Nipun Thapa (OS/Unit 3) 4

https://genuinenotes.com

Introduction to Deadlock

 Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause.

 Because all the processes are waiting, none of them will
ever cause any of the events that could wake up
(activated) any of the other member in the set, and all
the processes continue to wait forever.

 That is, none of the processes can-
run

release resources

be awakened

 Nipun Thapa (OS/Unit 3) 5

https://genuinenotes.com

Introduction to Deadlock

Nipun Thapa (OS/Unit 3) 6

https://genuinenotes.com

Example :

 Two process A and B each want to record a scanned document on
a CD.

 A requests permission to use Scanner and is granted.

 B is programmed differently and requests the CD recorder first
and is also granted.

 Now, A ask for the CD recorder, but the request is denied until B
releases it.

 Unfortunately, instead of releasing the CD recorder B asks for
Scanner.

 At this point both processes are blocked and will remain so
forever. This situation is called Deadlock.

Nipun Thapa (OS/Unit 3) 7

https://genuinenotes.com

Starvation vs. Deadlock

Starvation: thread waits indefinitely

 Example, low-priority thread waiting for resources constantly

in use by high-priority threads

Deadlock: circular waiting for resources

 Thread A owns Res 1 and is waiting for Res 2 Thread B owns

Res 2 and is waiting for Res 1

 Deadlock ==> Starvation but not vice versa

 Starvation can end.

 Deadlock can’t end without external intervention

Nipun Thapa (OS/Unit 3) 8

https://genuinenotes.com

Conditions for Deadlock

1. Mutual exclusion: Only one process may use a resource at a

time

2. Hold and wait: Processes hold resources already allocated to

them while waiting for additional resources.

3. No preemption condition : Resources cannot be removed

from the processes holding them until they are explicitly released

by processes holding them.

4. Circular wait condition : A circular chain of two or more

processes, each of which is waiting for a resource held by the

next process in the chain.

 -Potential consequence of the first three.

NOTE: All four of these conditions must be present for a deadlock to occur. If

 one of them is absent, no deadlock is possible.

Nipun Thapa (OS/Unit 3) 9

https://genuinenotes.com

Deadlock Modeling

Figure: Resource allocation graphs-

(a) Holding a resource.

(b)Requesting a resource.

(c) Deadlock.

Process - Circle.

Resource - Square.

Nipun Thapa (OS/Unit 3) 10

https://genuinenotes.com

11

A B C

Nipun Thapa (OS/Unit 3)

Deadlock Modeling

 Figure : An example of how deadlock occurs

https://genuinenotes.com

Deadlock Modeling

 (o) (p) (q)

Nipun Thapa (OS/Unit 3)

Figure: No deadlock occurence

12

https://genuinenotes.com

Multiple Resources

Nipun Thapa (OS/Unit 3) 13

https://genuinenotes.com

Should Deadlock be Handled ?

Nipun Thapa (OS/Unit 3) 14

https://genuinenotes.com

Deadlock handling strategies :

1. Just Ignore the problem altogether.

2. Detection and recovery. Let deadlocks occur, detect them,

and take action.

3. Dynamic avoidance by careful resource allocation.

4. Prevention, by structurally negating one of the four

conditions necessary to cause a deadlock.

Nipun Thapa (OS/Unit 3) 15

https://genuinenotes.com

 Deadlock prevention

 Deadlock avoidance

 Deadlock detection

 Recovery from deadlock

Nipun Thapa (OS/Unit 3) 16

Deadlock Handling

https://genuinenotes.com

The Ostrich Algorithm (Ignore deadlock)

 “Stick your head in the sand and pretend there is no

problem”.

 Mathematicians find it totally unacceptable and say that

deadlocks must be prevented.

 Engineers ask how often the problem is expected, how often

the system crashes for other reasons, and how serious a

deadlock is.

Nipun Thapa (OS/Unit 3) 17

https://genuinenotes.com

 Most operating systems, including UNIX, MINIX 3, and Windows,
just ignore the problem on the assumption that most users would
have an occasional deadlock to a rule restricting all users to one
process, one open file, and one of everything.

 If deadlocks could be eliminated for free, there would not be much
discussion.

 The problem is that the price is high, mostly in terms of putting
inconvenient restrictions on processes.

 Thus we are faced with an unpleasant trade-off between convenience
and correctness, and a great deal of discussion about which is more
important, and to whom.

 Under these conditions, general solutions are hard to find.

Nipun Thapa (OS/Unit 3) 18

The Ostrich Algorithm (Ignore deadlock)

https://genuinenotes.com

Deadlock Prevention

 Preventing one of the following condition which leads

to deadlock.

1. Denying the Mutual Exclusion Condition.

2. Denying the Hold and Wait Condition.

3. Denying the No Preemption Condition.

4. Denying the Circular Wait Condition.

Nipun Thapa (OS/Unit 3) 19

https://genuinenotes.com

1. Denying the Mutual Exclusion Condition

 If no resources were ever assigned exclusively to a single

process, we would never have deadlock.

 However, it is equally clear that allowing two processes to write

on the printer at the same time will lead to chaos.

 Principle:

avoid assigning resource when not absolutely necessary

as few processes as possible actually claim the resource

Nipun Thapa (OS/Unit 3) 20

https://genuinenotes.com

2. Denying the Hold and Wait Condition

 If we can prevent processes that hold resources from waiting for more

resources, we can eliminate deadlock.

 Require processes to request resources before starting of execution.

A process never has to wait for what it needs.

 Problems

May not know required resources at start of run.

Also ties up resources other processes could be using.

Resources will not be used optimally with this approach.

 Variation:

Process must give up all resources whatever it is holding.

Then request all immediately needed.

Nipun Thapa (OS/Unit 3) 21

https://genuinenotes.com

3. Denying the No Preemption Condition

 This is not a viable option.

 Consider a process given the printer

halfway through its job, now forcibly take away printer

Then !!??

Nipun Thapa (OS/Unit 3) 22

https://genuinenotes.com

4. Denying the Circular Wait Condition

 One way to achieve this:

Process is entitled only to a single resource at any moment.

If it needs a second one, it must release the first one.

Always acceptable????

 Next way:

Provide a global numbering of all the resources.

Requests must be made in numerical order.

E g., a process may request a printer and then a tape drive, but

not in reverse order.

Figure Next page

Nipun Thapa (OS/Unit 3) 23

https://genuinenotes.com

Figure : (a) Numerically ordered resources (b) A resource graph.

Deadlock occurs only if process A requests resource j and B

requests resource i.

Nipun Thapa (OS/Unit 3) 24

4. Denying the Circular Wait Condition

https://genuinenotes.com

Summary of approaches to deadlock

prevention:

Nipun Thapa (OS/Unit 3) 25

https://genuinenotes.com

Deadlock Avoidance

 By avoidance, we mean that a system will never go into state

which could potentially create a deadlock situation.

 Deadlock avoidance is achieved by being careful at the time of

resources allocation.

 The system must be able to decide whether granting a resource

is safe or not, and only make the allocation when it is safe.

 Let us observe following resource trajectory:

Nipun Thapa (OS/Unit 3) 26

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 27

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 28

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 29

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 30

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 31

https://genuinenotes.com

Deadlock Avoidance

Nipun Thapa (OS/Unit 3) 32

https://genuinenotes.com

Resource Trajectory

Figure : Two process resource trajectories.
Nipun Thapa (OS/Unit 3) 33

https://genuinenotes.com

Resource Trajectory

 The horizontal axis represents the number of

instructions executed by process A and vertical by B.

 p, q, r, s, t, u are few states.

 When A crosses the I1 line on the path from r to s, it

requests and is granted the printer. When B reaches

point t, it requests the plotter.

 At intersection point of I2 and I6 , process A is

requesting the plotter and B is requesting the printer,

and both are already assigned.

 So this region is region of deadlock.(See in earlier figure)

Nipun Thapa (OS/Unit 3) 34

https://genuinenotes.com

Resource Trajectory

 Important thing to be noted:

At point t, process B is requesting a resource(plotter). The system

must decide whether to grant it or not. If the grant is made, the

system will enter an unsafe region and eventually deadlock.

To avoided the deadlock, process B should be suspended until

process A has requested and released the plotter.

Nipun Thapa (OS/Unit 3) 35

https://genuinenotes.com

Safe and Unsafe States

Figure: Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

Nipun Thapa (OS/Unit 3) 36

https://genuinenotes.com

Safe and Unsafe States

 Sequence of run:

Process B leads to figure (b).

Process B completes, obtain (c).

Scheduler run process C, leading to (d).

When process C completes, get (e).

Now process A can get 6 instances.

Thus (a) is safe state.

Nipun Thapa (OS/Unit 3) 37

https://genuinenotes.com

Safe and Unsafe States

Figure: Demonstration that the sate in (b) is not safe

(a) (b) (c) (d)

Note that: An unsafe state is not a deadlocked state. System can run for a

while. From a safe state, the system can guarantee that all processes

will finish; from an unsafe state, no such guarantee can be given.

Nipun Thapa (OS/Unit 3) 38

https://genuinenotes.com

Example :

Nipun Thapa (OS/Unit 3) 39

Process Allocation Max

A 3 2

B 2 4

C 2 7

The total number of instance available

 for resource is 10

Sol:

1. If we start from A:

 then A need 6 but we have only 3, so not possible (deadlock

 possible)

2. If B,

 then B need 2 so we use our 3 resource on B. and remaining 1.

 After B is finished , Total = 1 + 4 = 5

3. If c,

 the c need 5 and we have 5 so remaining is 0.

 After C is finished , Total =2 +5 =7

4. Finally A,

 A need 6 and remaining 1 , After finished total = 3+7 = 10

Process Allocation Max required

A 3 2 6

B 2 4 2

C 2 7 5

B C A

https://genuinenotes.com

The Banker’s Algorithm for a Single Resource

 Dijkstra's(1965).

 Model on the small-town banker might deal with a group of

customers.

 Algorithm checks to see if granting the request leads to an

unsafe state.

 If granting leads to an unsafe state, it is denied otherwise

granting is carried out.

 Analogy: Banker-Operating system and Customers-

processes.

Nipun Thapa (OS/Unit 3) 40

https://genuinenotes.com

The Banker’s Algorithm for a Single Resource

.

Figure : Three resource allocation states:

 (a) Safe. (b) Safe. (c) Unsafe.

What would happen if a request from B for one more unit were

granted in (b)? =>leads to (c), which is unsafe state.

Nipun Thapa (OS/Unit 3) 41

https://genuinenotes.com

Banker's Algorithm for Multiple Resources

 E= The existing resource, P= Possessed(allocated or assigned), A=

Available Resource.

 Here, 1st is allocation matrix and 2nd one is need matrix.

 We can grant resources only when Need≤ Available (for a row).

Nipun Thapa (OS/Unit 3) 42

https://genuinenotes.com

Banker's Algorithm for Multiple Resources

Nipun Thapa (OS/Unit 3) 43

Algorithm for checking to see if a state is safe:

1. Look for row, R, whose unmet resource needs all

≤ A. If no such row exists, system will eventually deadlock

since no process can run to completion

2. Assume process of the row chosen requests all resources it

needs(which is guaranteed to be possible) and finishes. Mark

process as terminated, add all its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes marked

terminated (initial state was safe) or no process left whose

resource needs can be met (there is a deadlock).

https://genuinenotes.com

E (Existing Resources): (6 3 4 2)

P (Possessed Resources): (5 3 2 2)
A (Available Resources): (1 0 2 0)

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Soln:

• Process A, B & C can't run to completion since for each process,

Request is greater than Available Resources.

• Now process D can complete since its requests row is less than that of

Available resources.

Step 1:

When D completes running, the total available resources is:

==> A = (1, 0, 2, 0) + (1, 1, 0 , 1)= (2, 1, 2, 1)

Now Process E can run to completion

Step 2:

Now process E can also run to completion & return back all of its

resources.

==> A = (0 , 0, 0, 0) + (2, 1, 2, 1) = (2, 1, 2, 1)

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Step 3:

Now process A can also run to completion leading A to

(3, 0, 1, 1) + (2, 1, 2, 1) = (5, 1, 3, 2)

Step 4:

Now process C can also run to completion leading A to

(5, 1, 3, 2) + (1, 1, 1, 0) = (6, 2, 4, 2)

Step 5:

Now process B can run to completion leading A to

(6, 2, 4, 2) + (0, 1, 0 , 0) = (6, 3, 4, 2)

This implies the state is safe and Dead lock free

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Questions:

Q1. A system has three processes and four allocable resources. The total

four resource types exist in the amount as E= (4, 2, 3, 1). The current

allocation matrix and request matrix are as follows: Using Bankers

algorithm, explain if this state is deadlock safe or unsafe.

P2 P2

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Q2. Consider a system with five processes P0 through P4 and three

resources types A, B, C. Resource type A has 10 instances, B has 5

instances and type C has 7 instances. Suppose at time t0 following snapshot

of the system has been taken

1) What will be the content of the need Matrix?
2) Is the system in safe state? If yes, then what is the safe sequence?

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

soln

Need [i,j]= Max [i,j] – Allocation[i,j]

content of Need Matrix is:

1. applying Safety algorithms

For Pi if Needi <= Available, then pi is in Safe sequence,

Available = Available + Allocationi

A

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

For P0,
need0=7,4,3

Available = 3,3,2

==> Condition is false, So P0 must wait.

For P1 ,

need1= 1,2,2

Available=3,3,2

need1< Available

So P1 will be kept in safe sequence. & Available will be updated as:

Available= 3,3,2 + 2,0,0 = 5,3,2

For P2,

need2= 6,0,0

Available = 5,3,2

==> condition is again false, so P2 also have to wait.

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

For P3,

need3= 0,1,1

Available= 5,3,2

==> condition is true , P3 will be in safe sequence.

Available = 5,3,2 + 2,1,1 = 7,4,3

For P4,

need4= 4,3,1

Available = 7,4,3

==> condition Needi<= Available is true, so P4 will be in

safe sequence

Available = 7,4,3 + 0,0,2 = 7,4,5

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Now we have two processes P0 and P2 in waiting state. Either P0 or P1

can be chosen.

Let us take P2

whose need = 6,0,0

Available = 7,4,5

Since condition is true, P2 now comes in safe state leaving the

Available = 7,4,5 + 3,0,2 = 10, 4,7

Next P0

whose need = 7, 4, 3

Available = 10,4,7

since condition is true P0 also can be kept in safe state.

So system is in safe state & the safe sequence is <P1, P3, P4, P2, P0>

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Deadlock Detection

 We try to detect when deadlock happens, and then take action

to recover after the fact.

1. Deadlock Detection with one resource of each type:

Example:

 Consider a complex system with 7 processes, A through G,

and 6 resources, R through W.

 The state of which resources are currently owned and which

ones are currently being requested is as follows-

Nipun Thapa (OS/Unit 3) 53

https://genuinenotes.com

Deadlock Detection

1. Process A holds R and wants S.

2. Process B holds nothing but wants T.

3. Process C holds nothing but wants S.

4. Process E holds T and wants V.

5. Process F holds W and wants S.

6. Process G holds V and wants U.

From this, We can construct resource graph as follows:

Nipun Thapa (OS/Unit 3) 54

https://genuinenotes.com

Deadlock Detection

Figure: (a) A resource graph. (b) A cycle extracted from (a).

•Processes D, E and G are all deadlocked.

•Processes A,C and F are not deadlocked because S can be allocated to any one

of them, which then finishes and take by other two processes in turn.

Nipun Thapa (OS/Unit 3) 55

https://genuinenotes.com

Deadlock Detection

Nipun Thapa (OS/Unit 3) 56

https://genuinenotes.com

Deadlock Detection

Nipun Thapa (OS/Unit 3) 57

https://genuinenotes.com

Deadlock Detection with One Resource of

Each Type

Algorithm for detecting deadlock:

1. For each node, N in the graph, perform the following five

steps with N as the starting node.

2. Initialize L to the empty list, designate all arcs as

unmarked.

3. Add current node to end of L, check to see if node now

appears in L two times. If it does, graph contains a cycle

(listed in L), algorithm terminates.

…

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Deadlock Detection with One Resource of

Each Type

4. From given node, see if any unmarked outgoing arcs. If so,

go to step 5; if not, go to step 6.

5. Pick an unmarked outgoing arc at random and mark it. Then

follow it to the new current node and go to step 3.

6. If this is initial node, graph does not contain any cycles,

algorithm terminates. Otherwise, dead end. Remove it, go

back to previous node, make that one current node, go to

step 3.

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Deadlock Detection with One Resource of

Each Type

• Start at R and initialize L to empty list.

• Then add R to the list and move to only possibility, A and

add it to L, giving L=[R, A].

• From A, go to S, giving L=[R, A, S].

• S has no outgoing arcs, so it is dead end; forcing us to

backtrack to A.

• Since A has no unmarked outgoing arcs, we backtrack to R,

completing our inspection of R.

• Starting at A also quickly terminates.

• But, starting from B, we get L=[B,T,E,V,G,U,D] until

we get D and finally L=[B,T,E,V,G,U,D,T], we get cycle

and stop. (S is a dead end, so we backtrack from S to D)

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Deadlock Detection with Multiple Resources

 Figure: The four data structures needed by the

 deadlock detection algorithm.

Nipun Thapa (OS/Unit 3) 61

https://genuinenotes.com

Deadlock Detection with Multiple Resources

 Total n processes: P1 through Pn

 Total m resource classes: E1 through Em

 Ei : existing resource vector and

 Ai : available resource vector. (1 ≤ i ≤ m)

 C: current allocation matrix.

 R: request or need matrix.

Nipun Thapa (OS/Unit 3) 62

https://genuinenotes.com

Deadlock Detection with Multiple Resources

Deadlock detection algorithm:

1. Look for an unmarked process, Pi , for which the i-th

row of R is less than or equal to A.

2. If such a process is found, add the i-th row of C to A,

mark the process, and go back to step 1.

3. If no such process exists, the algorithm terminates.

Nipun Thapa (OS/Unit 3)

https://genuinenotes.com

Deadlock Detection with Multiple Resources

.

Figure : An example for the deadlock detection algorithm.

Nipun Thapa (OS/Unit 3) 64

https://genuinenotes.com

Deadlock Detection

Nipun Thapa (OS/Unit 3) 65

https://genuinenotes.com

Nipun Thapa (OS/Unit 3) 66

Deadlock Detection
https://genuinenotes.com

Deadlock Detection with Multiple Resources

 Here, requests represented by 1st and 2nd rows of matrix R

can not be satisfied (Compare A with each Rs) . But 3rd one can

be satisfied.

 So process 3 runs and eventually returns A=(2 2 2 0).

 At this point process 2 can run and return A=(4 2 2 1).

 Now process 1 can run and there is no deadlock.

 What happen if process 2 needs 1 CD-ROM drive, 2 Tape

drives and 1 Plotter (i.e. 3rd row of R becomes (2 1 1

0))?

 Entire system gets deadlock or not???

Nipun Thapa (OS/Unit 3) 67

https://genuinenotes.com

Nipun Thapa (OS/Unit 3) 68

Deadlock Detection
https://genuinenotes.com

Deadlock Recovery

Nipun Thapa (OS/Unit 3) 69

https://genuinenotes.com

Recovery from Deadlock

(a) Recovery through preemption

Temporarily take a resource away from its current owner and

give it to anther process.

It depends on nature of the resources.

Nipun Thapa (OS/Unit 3) 70

https://genuinenotes.com

(b) Recovery through rollback

Checkpoint a process periodically (checkpointing a process means that

its state is written to a file so that it can be restarted later).

Nipun Thapa (OS/Unit 3) 71

Recovery from Deadlock
https://genuinenotes.com

• To do the recovery, a process is rolled back to a point in time before it

acquired some other resource by starting one of its earlier check-

points or to the last known state prior to deadlock.

• That is, restart the process if it is found deadlocked.

 Nipun Thapa (OS/Unit 3) 72

Recovery from Deadlock
https://genuinenotes.com

Recovery from Deadlock

(c) Recovery through killing processes

Crudest but simplest way to break a deadlock.

Kill one of the processes in the deadlock cycle.

The other processes get its resources.

Choose process to kill, that will yield no ill effect to the entire

system.-

Nipun Thapa (OS/Unit 3) 73

https://genuinenotes.com

Nipun Thapa (OS/Unit 3) 74

 There are three basic approaches to recovery from

deadlock:Inform the system operator, and allow him/her to

take manual intervention.

 Terminate one or more processes involved in the deadlock

 Preempt resources.

Recovery from Deadlock

https://genuinenotes.com

Recovery from Deadlock

Nipun Thapa (OS/Unit 3) 75

Process Termination

 Two basic approaches, both of which recover resources allocated to terminated
processes:
 Terminate all processes involved in the deadlock. This definitely solves the deadlock, but at

the expense of terminating more processes than would be absolutely necessary.

 Terminate processes one by one until the deadlock is broken. This is more conservative,
but requires doing deadlock detection after each step.

 In the latter case there are many factors that can go into deciding which processes to
terminate next:
 Process priorities.

 How long the process has been running, and how close it is to finishing.

 How many and what type of resources is the process holding. (Are they easy to preempt
and restore?)

 How many more resources does the process need to complete.

 How many processes will need to be terminated

 Whether the process is interactive or batch.

 (Whether or not the process has made non-restorable changes to any resource.)

https://genuinenotes.com

Recovery from Deadlock

Nipun Thapa (OS/Unit 3) 76

Resource Preemption

 When preempting resources to relieve deadlock, there are three
important issues to be addressed:

 Selecting a victim - Deciding which resources to preempt from which
processes involves many of the same decision criteria outlined above.

 Rollback - Ideally one would like to roll back a preempted process to a safe
state prior to the point at which that resource was originally allocated to the
process. Unfortunately it can be difficult or impossible to determine what
such a safe state is, and so the only safe rollback is to roll back all the way
back to the beginning. (I.e. abort the process and make it start over.)

 Starvation - How do you guarantee that a process won't starve because its
resources are constantly being preempted? One option would be to use a
priority system, and increase the priority of a process every time its
resources get preempted. Eventually it should get a high enough priority that
it won't get preempted any more.

https://genuinenotes.com

Finished Unit 3

Nipun Thapa (OS/Unit 3) 77

https://genuinenotes.com

