
Unit 2

Process Management

1 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process

 A process is an instance of a program running in a computer.

 It is close in meaning to task, a term used in some OS.

 In UNIX and some other OS, a process is started when a

program is initiated (either by a user entering a shell

command or by another program).

 A program by itself is not a process; a program is a passive

entity, such as a file containing a list of instructions stored on

disks. (often called an executable file)

 A program becomes a process when an executable file is

loaded into memory and executed.

2 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process..

 When a program is loaded into a memory and it become a

process , it can be divided into four sections :

3 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process..

 Stack : it contain temporary data such as method/ function

parameters return address and local variables.

 Heap : this is dynamically allocated memory to a process

during its run time.

 Text : this includes the current activity represented by the

value of program counter and the contents of the processor’s

registers.

 Data: This section contain the global and static variable

4 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Program

 Program is an executable file containing the set of

instructions written to perform a specific job on our

computer.

 E.g. chrome.exe

 is an executable file containing the set of instruction

written so that we can view web page.

 A program is piece of code which may be a single line or millions

of lines.

 Program are not stored on the primary memory on our computer.

They are stored on a disk or secondary memory of our computer

5 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Vs Program
BASIS FOR

COMPARISON

PROGRAM

PROCESS

Basic

Program is a set of

instruction.

When a program is executed,

it is known as process.

Nature

Passive

Active

Lifespan

Longer Limited

Required resources

Program is stored on disk in

some file and does not

require any other resources.

Process holds resources such

as CPU, memory address,

disk, I/O etc.

6 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Key Differences Between Program and

Process
 A program is a definite group of ordered operations that are to

be performed. On the other hand, an instance of a program
being executed is a process.

 The nature of the program is passive as it does nothing until it gets
executed whereas a process is dynamic or active in nature as it is
an instance of executing program and perform the specific action.

 A program has a longer lifespan because it is stored in the
memory until it is not manually deleted while a process has a
shorter and limited lifespan because it gets terminated after the
completion of the task.

 The resource requirement is much higher in case of a process; it
could need processing, memory, I/O resources for the successful
execution. In contrast, a program just requires memory for
storage.

7 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

The example of difference between a

program and a process

main ()

{

 int i , prod =1;

 for (i=1;i<=100;i++)

 prod = prod*i;

}

• It is a program containing one multiplication statement

(prod = prod * i)

• but the process will execute 100 multiplication, one at a time
through the 'for' loop.

8 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process…

 Although two processes may be associated with the same

program, they are nevertheless considered two separate

execution sequences.

 For instance several users may be running different copies of

mail program, or the same user may invoke many copies of

web browser program.

 Each of these is a separate process, and although the text

sections are equivalent, the data, heap and stack section may

vary.

9 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation:

There are four principal events that cause processes

to be created:

 1. System initialization.

 2. Execution of a process creation system call by a

 running process.

 3. A user request to create a new process.

 4. Initiation of a batch job.

10 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..

 Parent process create children processes, which, in turn

create other processes, forming a tree of processes .

 Generally, process identified and managed via a process

identifier (pid).

 When an operating system is booted, often several

processes are created.

 Some of these are foreground processes, that is,

processes that interact with (human) users and perform

work for them.

11 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..

Daemons

(a daemon is a computer program that runs as a Hardware

activity, or other programs by performing some task.)

 Processes, which are not associated with particular users, but

instead have some specific function.

 •Processes that stay in the background to handle some

activity such as web pages, printing, and so on.

12 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..
In UNIX there is only one system call to create a new process:

fork().
 This call creates an exact clone of the calling process.

 After the fork, the two processes, the parent and the child, have
the same memory image, the same environment strings, and the
same open files.

 Usually, the child process then executes execve or a similar
system call to change its memory image and run a new program.

 Fork() returns a negative value if the child creation is unsuccessful.

 Fork() returns the value zero if the child creation is successful.

 Fork() returns a positive integer (the process id of the parent
process).

13 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation
1. #include<stdio.h>

2. #include<unistd.h>

3. int main() {

4. int pid;

5. pid = fork(); /* fork another process */

6. if (pid < 0) { /* error occurred */

7. printf(―child process creation is Failed");

8. }

9. else if (pid == 0) { /* child process */

10. Printf(―child process‖);

11. printf("%d",pid);

12. }

13. else { /* parent process */

14. printf (―parent process");

15. printf("%d",pid);

16. }

17.}

14 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..

 fork() system call implementation for process creation

1. main()

2. {

3.fork();

4.printf(“hello”);

5. }

main()

{

printf(“hello”)

;

}

Parent process Child process

•Here are two process one

is parent and next is newly

created by fork system

call.

• printf(―hello‖) statement

is executed twice. One by

child process and another

by parent process itself

15 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..

If so what will be the o/p for this???

1. main()

2. {

3. fork();

4. fork();

5. printf(―hello‖);

6. }

16 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Process Creation..
And this???

1. main()

2. {

3. fork();

4. fork();

5. fork();

6. printf(―hello‖);

7. }

• If a program consists of n fork() calls then it will create 2n-1

childprocess

17 Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Different Process States (Process life

cycle)

Nipun Thapa (OS/Unit 2) 18

Processes in the operating system can be in any of the following

states:

 NEW- The process is being created.

 READY- The process is waiting to be assigned to a processor.

 RUNNING- Instructions are being executed.

 WAITING- The process is waiting for some event to

occur(such as an I/O completion or reception of a signal).

 TERMINATED- The process has finished execution.

https://genuinenotes.com

Different Process States (Process life

cycle)..

Nipun Thapa (OS/Unit 2) 19

https://genuinenotes.com

Process life cycle

Nipun Thapa (OS/Unit 2) 20

https://genuinenotes.com

Process Control Block (PCB)

Nipun Thapa (OS/Unit 2) 21

 Process Control Block (PCB, also called Task

Controlling Block, Entry of the Process Table, Task

Struct, or Switchframe) is a data structure in

the operating system kernel containing the

information needed to manage the scheduling of a

particular process.

 The PCB is "the manifestation(expression) of a

process in an operating system."

https://genuinenotes.com

Process Control Block

Nipun Thapa (OS/Unit 2) 22

 While creating a process the operating system performs several
operations. To identify these process, it must identify each process,
hence it assigns a process identification number (PID) to each process.

 As the operating system supports multi-programming, it needs to keep
track of all the processes.

 For this task, the process control block (PCB) is used to track the
process’s execution status.

 Each block of memory contains information about the process state,
program counter, stack pointer, status of opened files, scheduling
algorithms, etc.

 All these information is required and must be saved when the process is
switched from one state to another.

 When the process made transitions from one state to another, the
operating system must update information in the process’s PCB.

https://genuinenotes.com

Role of PCB

Nipun Thapa (OS/Unit 2) 23

 The role or work of process control block (PCB) in
process management is that it can access or modified by most
OS utilities including those are involved with memory,
scheduling, and input / output resource access.

 It can be said that the set of the process control blocks give
the information of the current state of the operating system.

 Data structuring for processes is often done in terms of
process control blocks.

 For example, pointers to other process control blocks inside
any process control block allows the creation of those queues
of processes in various scheduling states.

https://genuinenotes.com

Role of PCB..

Nipun Thapa (OS/Unit 2) 24

The following are the various information that is

contained by process control block:

 Naming the process

 State of the process

 Resources allocated to the process

 Memory allocated to the process

 Scheduling information

 Input / output devices associated with process

https://genuinenotes.com

Components of PCB

Nipun Thapa (OS/Unit 2) 25

 The following are the various components that are associated
with the process control block PCB:

1. Process ID:

2. Process State

3. Program counter

4. Register Information

5. Scheduling information

6. Memory related information

7. Accounting information

8. Status information related to input/output

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 26

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 27

1. Process ID:

In computer system there are various process running

simultaneously and each process has its unique ID. This Id

helps system in scheduling the processes. This Id is provided

by the process control block.

In other words, it is an identification number that uniquely

identifies the processes of computer system.

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 28

2. Process state:

 As we know that the process state of any process can be New,

running, waiting, executing, blocked, suspended, terminated.

For more details regarding process states you can

refer process management of an Operating System.

Process control block is used to define the process state of

any process.

 In other words, process control block refers the states of the

processes.

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 29

 3. Program counter:

 Program counter is used to point to the address of the next

instruction to be executed in any process. This is also

managed by the process control block.

 4. Register Information:

 This information is comprising with the various registers,

such as index and stack that are associated with the process.

This information is also managed by the process control

block.

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 30

 5. Scheduling information:

 Scheduling information is used to set the priority of different

processes. This is very useful information which is set by the

process control block. In computer system there were many

processes running simultaneously and each process have its

priority. The priority of primary feature of RAM is higher

than other secondary features. Scheduling information is very

useful in managing any computer system.

https://genuinenotes.com

Components of PCB..

Nipun Thapa (OS/Unit 2) 31

 6. Memory related information:

 This section of the process control block comprises of page and
segment tables. It also stores the data contained in base and limit
registers.

 7. Accounting information:

 This section of process control block stores the details relate to
central processing unit (CPU) utilization and execution time of a
process.

 8. Status information related to input / output:

 This section of process control block stores the details pertaining
to resource utilization and file opened during the process
execution.

https://genuinenotes.com

Process Table

Nipun Thapa (OS/Unit 2) 32

 The operating system maintains a table called process table,
which stores the process control blocks related to all the
processes.

 The process table is a data structure maintained by the operating
system to facilitate context switching and scheduling, and other
activities discussed later.

 Each entry in the table, often called a context block, contains
information about a process such as process name and state
(discussed above), priority (discussed above), registers, and a
semaphore it may be waiting on . The exact contents of a context
block depends on the operating system. For instance, if the OS
supports paging, then the context block contains an entry to the
page table.

https://genuinenotes.com

Thread

Nipun Thapa (OS/Unit 2) 33

 A thread is the smallest unit of processing that can be

performed in an OS.

 In most modern operating systems, a thread exists within a

process - that is, a single process may contain multiple

threads.

 A thread is a basic unit of CPU utilization, it comprises a

thread ID, a program counter, a register set, and a stack.

 It shares with other threads belonging to the same process its

code section, data section, and other operating system

resources, such as open files and signals.

https://genuinenotes.com

Threads..

Nipun Thapa (OS/Unit 2) 34

 A traditional (or heavy weight) process has a single thread of

control.

 If a process has multiple thread of control, it can perform

more than one task at a time.

 Fig below illustrate the difference between single threaded

process and a multithreaded process.

https://genuinenotes.com

Threads..

Nipun Thapa (OS/Unit 2) 35

(a) Three processes each with one thread

(b) One process with three threads

https://genuinenotes.com

Threads

Nipun Thapa (OS/Unit 2) 36

https://genuinenotes.com

Threads..

Nipun Thapa (OS/Unit 2) 37

Each thread has its own stack

https://genuinenotes.com

Thread Usage example

Nipun Thapa (OS/Unit 2) 38

https://genuinenotes.com

Process Vs Threads

Nipun Thapa (OS/Unit 2) 39

BASIS FOR COMPARISON PROCESS THREAD

Basic Program in execution. Lightweight process or part of

it.

Memory sharing Completely isolated and do not

share memory.

Shares memory with each

other.

Resource consumption More Less

Efficiency Less efficient as compared to

the process in the context of

communication.

Enhances efficiency in the

context of communication.

Time required for creation More

Less

Context switching time Takes more time. Consumes less time.

Uncertain termination Results in loss of process. A thread can be reclaimed.

Time required for termination More

https://genuinenotes.com

Key Differences Between Process and

Thread

Nipun Thapa (OS/Unit 2) 40

 All threads of a program are logically contained within a
process.

 A process is heavy weighted, but a thread is light weighted.

 A program is an isolated execution unit whereas thread is not
isolated and shares memory.

 A thread cannot have an individual existence; it is attached to
a process. On the other hand, a process can exist individually.

 At the time of expiration of a thread, its associated stack
could be recovered as every thread has its own stack. In
contrast, if a process dies, all threads die including the
process.

https://genuinenotes.com

Properties of a Thread:

Nipun Thapa (OS/Unit 2) 41

 Only one system call can create more than one thread

(Lightweight process).

 Threads share data and information.

 Threads shares instruction, global and heap regions but has

its own individual stack and registers.

 Thread management consumes no or fewer system calls as

the communication between threads can be achieved using

shared memory.

 The isolation property of the process increases its overhead

in terms of resource consumption.

https://genuinenotes.com

Types of Thread

Nipun Thapa (OS/Unit 2) 42

There are two types of threads:

 User Threads

 Kernel Threads

https://genuinenotes.com

User Level thread (ULT)

Nipun Thapa (OS/Unit 2) 43

 Is implemented in the user level library, they are not created using
the system calls. Thread switching does not need to call OS and to cause
interrupt to Kernel. Kernel doesn’t know about the user level thread and
manages them as if they were single-threaded processes.

Advantages of ULT –

 Can be implemented on an OS that doesn't support multithreading.

 Simple representation since thread has only program counter, register
set, stack space.

 Simple to create since no intervention of kernel.

 Thread switching is fast since no OS calls need to be made.

Disadvantages of ULT –

 No or less co-ordination among the threads and Kernel.

 If one thread causes a page fault, the entire process blocks.

https://genuinenotes.com

Kernel Level Thread (KLT) –

Nipun Thapa (OS/Unit 2) 44

 Kernel knows and manages the threads. Instead of thread
table in each process, the kernel itself has thread table (a master one)
that keeps track of all the threads in the system. In addition kernel
also maintains the traditional process table to keep track of the
processes. OS kernel provides system call to create and manage
threads.

Advantages of KLT –
 Since kernel has full knowledge about the threads in the system,

scheduler may decide to give more time to processes having large
number of threads.

 Good for applications that frequently block.

Disadvantages of KLT –
 Slow and inefficient.
 It requires thread control block so it is an overhead.

https://genuinenotes.com

Multithreading

Nipun Thapa (OS/Unit 2) 45

 Many software package that run on modern desktop pcs are

multithreaded.

 An application is implemented as a separate process with

several threads of control.

 A web browser might have one thread to display images or

text while other thread retrieves data from the network.

 A word-processor may have a thread for displaying graphics,

another thread for reading the character entered by user

through the keyboard, and a third thread for performing

spelling and grammar checking in the background.

https://genuinenotes.com

Why Multithreading

Nipun Thapa (OS/Unit 2) 46

 In certain situations, a single application may be required to
perform several similar task such as a web server accepts
client requests for web pages, images, sound, graphics etc.

 A busy web server may have several clients concurrently
accessing it.

 So if the web server runs on traditional single threaded
process, it would be able to service only one client at a time.

 The amount of time that the client might have to wait for its
request to be serviced is enormous.

 One solution of this problem can be thought by creation of
new process.

https://genuinenotes.com

Why Multithreading …

Nipun Thapa (OS/Unit 2) 47

 When the server receives a new request, it creates a separate
process to service that request. But this method is heavy weight.

 In fact this process creation method was common before threads
become popular.

 Process creation is time consuming and resource intensive.

 It is generally more efficient for one process that contains multiple
threads to serve the same purpose.

 This approach would multithread the web server process. The
server would cerate a separate thread that would listen for clients
requests.

 When a request is made by client, rather than creating another
process, server will create a separate thread to service the request.

https://genuinenotes.com

Benefits of Multi-threading:

Nipun Thapa (OS/Unit 2) 48

Responsiveness:

 Multithreaded interactive application continues to run even if
part of it is blocked or performing a lengthy operation,
thereby increasing the responsiveness to the user.

Resource Sharing:

 By default, threads share the memory and the resources of
the process to which they belong.

 It allows an application to have several different threads of
activity within the same address space.

 These threads running in the same address space do not need
a context switch.

https://genuinenotes.com

Benefits of Multi-threading…

Nipun Thapa (OS/Unit 2) 49

Economy:

 Allocating memory and resources for each process creation is
costly.

 Since thread shares the resources of the process to which they
belong, it is more economical to create and context switch
threads.

 Shorter context switching time. Less overhead than running
several processes doing the same task.

Utilization of multiprocessor architecture:

 The benefits of multi threading can be greatly increased in
multiprocessor architecture, where threads may be running in
parallel on different processors.

 Multithreading on a multi-CPU increases concurrency.

https://genuinenotes.com

Multithreading Model

Nipun Thapa (OS/Unit 2) 50

 The user threads must be mapped to kernel threads, by

one of the following strategies:

 Many to One Model

 One to One Model

 Many to Many Model

https://genuinenotes.com

Many to One Model

Nipun Thapa (OS/Unit 2) 51

 In the many to one model, many user-level threads are all

mapped onto a single kernel thread.

 Thread management is handled by the thread library in user

space, which is efficient in nature.

https://genuinenotes.com

One to One Model

Nipun Thapa (OS/Unit 2) 52

 The one to one model creates a separate kernel thread to

handle each and every user thread.

 Most implementations of this model place a limit on how

many threads can be created.

 Linux and Windows from 95 to XP implement the one-to-

one model for threads.

https://genuinenotes.com

Many to Many Model

Nipun Thapa (OS/Unit 2) 53

 The many to many model multiplexes any number of user

threads onto an equal or smaller number of kernel threads,

combining the best features of the one-to-one and many-to-

one models.

 Users can create any number of the threads.

 Blocking the kernel system calls

does not block the entire process.

 Processes can be split across

multiple processors.

https://genuinenotes.com

Inter Process Communication

Nipun Thapa (OS/Unit 2) 54

 IPC is a mechanism that allows the exchange of data between processes.

 Processes frequently needs to communicate with each other. For
example, the output of the first process must be passed to the second
process and so on.

 Thus there is a need for communication between the process, preferably
in a well-structured way not using the interrupts.

 IPC enables one application to control another application, and for
several applications to share the same data without interfering with one
another.

 Inter-process communication (IPC) is a set of techniques for the
exchange of data among multiple threads in one or more processes.

 Processes may be running on one or more computers connected by a
network.

 Processes executing concurrently in the operating system may be either
independent process or co-operating process

https://genuinenotes.com

Inter Process Communication

Nipun Thapa (OS/Unit 2) 55

Independent process:

 A process is independent if it can't affect or be affected by

another process.

Co-operating Process:

 A process is co-operating if it can affects other or be affected

by the other process.

 Any process that shares data with other process is called co-

operating process.

https://genuinenotes.com

Reasons for providing an environment

for process co-operation:

Nipun Thapa (OS/Unit 2) 56

1.Information sharing:
 Several users may be interested to access the same piece of information(for

instance a shared file).

 We must allow concurrent access to such information.

2.Computation Speedup:
 To run the task faster we must breakup tasks into sub-tasks.
 Such that each of them will be executing in parallel to other, this can be

achieved if there are multiple processing elements.

3.Modularity:
 construct a system in a modular fashion which makes easier to deal with

individual.

4.convenience:
 Even an individual user may work on many tasks at the same time. For

instance, a user may be editing, printing, and compiling in parallel.

https://genuinenotes.com

There are two fundamental ways of

IPC.

Nipun Thapa (OS/Unit 2) 57

a. Message Passing

b. Shared Memory

https://genuinenotes.com

Shared Memory:

Nipun Thapa (OS/Unit 2) 58

 Here a region of memory that is shared by co-operating process is

established.

 Process can exchange the information by reading and writing data

to the shared region.

 Shared memory allows maximum speed and convenience of

communication as it can be done at the speed of memory within

the computer.

 System calls are required only to establish shared memory regions.

 Once shared memory is established no assistance from the kernel

is required, all access are treated as routine memory access.

https://genuinenotes.com

Message Passing:

Nipun Thapa (OS/Unit 2) 59

 Communication takes place by means of messages exchanged

between the co-operating process

 Message passing is useful for exchanging the smaller amount

of data.

 Easier to implement than shared memory.

 Slower than that of Shared memory as message passing

system are typically implemented using system call

 Which requires more time consuming task of Kernel

intervention.

https://genuinenotes.com

IPC: Race Condition

Nipun Thapa (OS/Unit 2) 60

Two processes want to access shared memory at same

time

Race Condition

The situation where two or more processes are reading or writing some

shared data, but not in proper sequence is called race Condition

https://genuinenotes.com

Race Condition:

Nipun Thapa (OS/Unit 2) 61

 The situation where 2 or more processes are reading or writing

some shared data, but not in proper sequence is called race

Condition.

 The final results depends on who runs precisely(accurately) when.

example, a print spooler.

 When any process wants to print a file, it enters the file name in a

special spooler directory.

 Another process, the printer daemon, periodically checks

to see if there are any files to be printed, and if there are, it prints

them and removes their names from the directory.

https://genuinenotes.com

Race Condition:

Nipun Thapa (OS/Unit 2) 62

 Imagine that our spooler directory has a large number of slots,

numbered 0, 1, 2, ..., each one capable of holding a file name.

Also imagine that there are two shared variables,

 out: which points to the next file to be printed

 in: which points to the next free slot in the directory.

https://genuinenotes.com

Race Condition:

Nipun Thapa (OS/Unit 2) 63

 At a certain instant, slots 0 to 3 are empty (the files have already

been printed) and slots 4 to 6 are full (with the names of files to

be printed).

 More or less simultaneously, processes A and B decide they want

to queue a file for printing as shown in the fig.

 Process A reads in and stores the value, 7, in a local variable called

next_free_slot.

https://genuinenotes.com

Race Condition:

Nipun Thapa (OS/Unit 2) 64

 Just then a clock interrupt occurs and the CPU decides that

process A has run long enough, so it switches to process B.

 Process B also reads in, and also gets a 7, so it stores the

name of its file in slot 7 and updates in to be an 8. Then it

goes off and does other things.

https://genuinenotes.com

Race Condition

Nipun Thapa (OS/Unit 2) 65

 Eventually, process A runs again, starting from the place it left off last time. It

looks at next_free_slot, finds a 7 there, and writes its file name in slot

7, erasing the name that process B just put there.

 Then it computes next_free_slot + 1, which is 8, and sets in to 8.

 The spooler directory is now internally consistent, so the printer daemon will

not notice anything wrong, but process B will never receive any output.

https://genuinenotes.com

Implementation Mutual Exclusion

Nipun Thapa (OS/Unit 2) 66

https://genuinenotes.com

IPC: Critical Regions and solution

Nipun Thapa (OS/Unit 2) 67

 The part of the program where the shared memory is

accessed that must not be concurrently accessed by more then

one processes is called the critical region

Four conditions to provide mutual exclusion Or (Rules for avoiding

Race Condition) Solution to Critical section problem:

 No two processes simultaneously in critical region

 No assumptions made about speeds or numbers of CPUs

 No process running outside its critical region may block

another process

 No process must wait forever to enter its critical region

https://genuinenotes.com

IPC: Critical Regions and solution

Nipun Thapa (OS/Unit 2) 68

Mutual exclusion using critical regions

https://genuinenotes.com

IPC: Critical Regions and solution

Nipun Thapa (OS/Unit 2) 69

Busy waiting

 Continuously testing a variable until some value appears is

called busy waiting.

 If the entry is allowed it execute else it sits in tight loop and

waits.

 Busy-waiting: consumption of CPU cycles while a thread

is waiting for a lock
 Very inefficient

 Can be avoided with a waiting queue

https://genuinenotes.com

How to Manage Race Condition

Nipun Thapa (OS/Unit 2) 70

 Mutual Exclusion with Busy Waiting

 Strict Alternation

 Peterson’s Solution

Mutual Exclusion without Busy Waiting

 Sleep and wakeup

 Semaphore

 Message Passing

 Monitor

https://genuinenotes.com

Strict Alternation

Nipun Thapa (OS/Unit 2) 71

Turn=0

(a) (b)

while (1) { while (1) { //repeat forever

while(turn != 0) /* loop* /; while(turn != 1) /* loop* /;

critical_region(); critical_region();

turn = 1; turn = 0;

noncritical_region(); noncritical_region();

} }

(a) Process 0. (b) Process 1.

A proposed solution to the critical region problem.

In both cases, be sure to note the semicolons terminating the while

statements, this ensures waiting by a process.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 72

 Integer variable turn is initially 0.

 It keeps track of whose turn it is to enter the critical region and
examine or update the shared memory.

 Initially, process 0 inspects turn, finds it to be 0, and enters its
critical region.

 Process 1 also finds it to be 0 and therefore sits in a tight loop
continually testing turn to see when it becomes 1.

 Continuously testing a variable until some value appears is called
busy waiting. It should usually be avoided, since it
wastes CPU time.

 A lock that uses busy waiting is called a spin lock. When process 0
leaves the critical region, it sets turn to 1, to allow process 1 to
enter its critical region.

 This way no two process can enters critical region simultaneously
i.e mutual exclusion is fulfilled.

https://genuinenotes.com

Drawbacks:

Nipun Thapa (OS/Unit 2) 73

 Taking turn is not a good idea when one of the process is much
slower than other.

 This situation requires that two processes strictly alternate in
entering their critical region.

Example:

 Process 0 finishes the critical region it sets turn to 1 to allow
process 1 to enter critical region.

 Suppose that process 1 finishes its critical region quickly so both
process are in their non critical region with turn sets to 0.

 Process 0 executes its whole loop quickly, exiting its critical
region & setting turn to 1.

 At this point turn is 1 and both processes are executing in their
noncritical regions.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 74

 Suddenly, process 0 finishes its noncritical region and goes

back to the top of its loop.

 Unfortunately, it is not permitted to enter its critical region

now since turn is 1 and process 1 is busy with its noncritical

region.

 This situation violates the condition 3 set above: No process

running outside the critical region may block other process.

 The concept of mutual exclusion is fulfilled here, but the

concept of progress is not fulfilled.

 The process who is not interested to enter the critical section

is blocking the next process to enter the critical section.

https://genuinenotes.com

Second attempt(algorithm 2)

Nipun Thapa (OS/Unit 2) 75

• In this algorithm the variable turn is replaced by flag.

flag[0]=flag[1]=F;// Boolean value initially representing false.

while (1){ while (1) { //repeat forever

flag[0] =T; flag[1]=T; // interested to enter c.s

while(flag[1]) /* loop* /; while(flag[0]) /* loop* /;

critical_region(); critical_region();

flag[0] =F; flag[1] =F;

noncritical_region(); noncritical_region();

} }

(a) Process 0. (b) Process 1.

https://genuinenotes.com

Problem with this solution (2nd attempt)

Nipun Thapa (OS/Unit 2) 76

 Deadlock can occur if

 flag[0]=flag[1]=T;

 during the case of context switching, here

initially process p0makes its flag to TRUE after that

context switches and p1 and makes its flag to TRUE

 At this situation both the process have set their own

value of flag to TRUE they both will go into loop forever

as shown in the code segment above.

https://genuinenotes.com

Peterson's Solution:

Nipun Thapa (OS/Unit 2) 77

 By combination the idea of taking turns with the idea of lock
variables and warning variables.:

while (1){ //repeat forever OR while(TRUE)

flag[0] =T; // interested to enter c.s

turn=1;

while(turn==1 && flag[1]==T) /* loop to give chance to other*/;

critical_region();

flag[0] =F;

noncritical_region();

}

(a) Process 0.

https://genuinenotes.com

Peterson's Solution:

Nipun Thapa (OS/Unit 2) 78

while (1){ //repeat forever

flag[1] =T; // interested to enter c.s

turn=0;

while(turn==0 && flag[0]==T) /* loop to give chance to other*/;

critical_region();

flag[1] =F;

noncritical_region();

}

(b) Process 1.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 79

Another Example of Peterson’s solution
https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 80

https://genuinenotes.com

The TSL (Test and Set Lock)Instruction
 Many computers, especially those designed with multiple

processors in mind, have an instruction:

 TSL RX,LOCK

 (Test and Set Lock) that works as follows.

 It reads the contents of the memory word lock into register RX
and then stores a nonzero value at the memory address lock.

 The operations of reading the word and storing into it are
guaranteed to be indivisible—no other processor can access the
memory word until the instruction is finished.

 The CPU executing the TSL instruction locks the memory bus to
prohibit other CPUs from accessing memory until it is done.

81

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

 When lock is 0, any process may set it to 1 using the TSL

instruction and then read or write the shared memory. When

it is done, the process sets lock back to 0 using an ordinary

move instruction.

82

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Sleep and Wakeup:

Nipun Thapa (OS/Unit 2) 83

 Sleep and wakeup are system calls that blocks process instead

of wasting CPU time when they are not allowed to enter

their critical region.

 Sleep is a system call that causes the caller to block, that is,

be suspended until another process wakes it up.

 The wakeup call has one parameter, the process to be

awakened eg. wakeup(consumer) or wakeup(producer).

https://genuinenotes.com

Sleep and Wakeup

 Both Peterson’s solution and the solution using TSL are correct,
but both have the defect of requiring busy waiting.

 When a process wants to enter its critical region, it checks to see
if the entry is allowed. If it is not allowed, the process just sits in a
tight loop waiting until it is allowed.

 Beside of wasting CPU time, this approach can also have
unexpected effects.

 Consider a computer with two processes, H, with high priority
and L, with low priority.

 The scheduling rules are such that H runs whenever it is in ready
state. At a certain moment, with L is in its critical region, H
becomes ready to run. H now begins busy waiting. Before H is
completed, L can not be scheduled. So L never gets the chance to
leave its critical region, so H loops forever. 84

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

 Now let me look at some interprocess communication

primitives that block processes when they are not allowed to

enter their critical regions, instead of wasting CPU time in an

empty loop.

 One of the simplest primatives is the pair sleep and wakeup.

Sleep is a system call that causes the caller to block, the caller

is suspended until another process wakes it up. The wakeup

call has one parameter, the process to be awakened.

85

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Examples to use Sleep and Wakeup

primitives:

Nipun Thapa (OS/Unit 2) 86

Producer-consumer problem (Bounded Buffer):

 Two processes share a common, fixed-size buffer.

 One of them, the producer, puts information into the buffer,

and the other one, the consumer, takes it out

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 87

Trouble arises when

1. The producer wants to put a new data in the buffer, but

buffer is already full.

Solution:

 Producer goes to sleep and to be awakened when the
consumer has removed data.

2. The consumer wants to remove data from the buffer but
buffer is already empty.

Solution:

 Consumer goes to sleep until the producer puts some data in
buffer and wakes consumer up.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 88

#define N 100 /* number of slots in the buffer */

int count = 0; /* number of items in the buffer */

void producer(void)

{

 int item;

 while (TRUE)

{ /* repeat forever */

 item = produce_item(); /* generate next item */

 if (count == N) sleep(); /* if buffer is full, go to sleep */

 insert_item(item); /* put item in buffer */

 count = count + 1; /* increment count of items in buffer */

 if (count == 1) wakeup(consumer); /* was buffer empty? ie.
 initially */

}

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 89

void consumer(void)

{

 int item;

 while (TRUE)

{ /* repeat forever */

 if (count == 0) sleep(); /* if buffer is empty, got to sleep */

 item = remove_item(); /* take item out of buffer */

 count = count - 1; /* decrement count of items in buffer */

 if (count ==N - 1) wakeup(producer); /* was buffer full? */

 consume_item(item); /*consume item */

}

}

Count--> a variable to keep track of the no. of items in the buffer.

N → Size of Buffer

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 90

Producers code:
 The producers code is first test to see if count is N.

 If it is, the producer will go to sleep ; if it is not the producer will
add an item and increment count.

Consumer code:
 It is similar as of producer.

 First test count to see if it is 0. If it is, go to sleep; if it nonzero
remove an item and decrement the counter.

 Each of the process also tests to see if the other should be
awakened and if so wakes it up.

 This approach sounds simple enough, but it leads to the same
kinds of race conditions as we saw in the spooler
directory.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 91

Lets see how the race condition arises

1. The buffer is empty and the consumer has just read count to

see if it is 0.

2. At that instant, the scheduler decides to stop running the

consumer temporarily and start running the producer.

(Consumer is interrupted and producer resumed)

3.The producer creates an item, puts it into the buffer, and

increases count.

4.Because the buffer was empty prior to the last addition

(count was just 0), the producer tries to wake up the

consumer.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 92

5. Unfortunately, the consumer is not yet logically asleep, so

the wakeup signal is lost.

6. When the consumer next runs, it will test the value of

count it previously read, find it to be 0, and go to sleep.

7. Sooner or later the producer will fill up the buffer and also

go to sleep. Both will sleep forever.

• The problem here is that a wakeup sent to a process that is not

(yet) sleeping is lost.

https://genuinenotes.com

Semaphores

 Semaphore is an integer variable to count the number of
wakeup processes saved for future use.

 A semaphore could have the value 0, indicating that no
wakeup processes were saved, or some positive value if
one or more wakeups were pending.

 There are two operations, down (wait) and up(signal)
(generalizations of sleep and wakeup, respectively).

 The down operation on a semaphore checks if the value is
greater than 0. If so, it decrements the value and just
continues.

 If the value is 0, the process is put to sleep without
completing the down for the moment.

93

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

 The up operation increments the value of the semaphore

addressed. If one or more processes were sleeping on that

semaphore, unable to complete an earlier down operation,

one of them is chosen by the system (e.g., at random) and

is allowed to complete its down.

 Checking the value, changing it and possibly going to sleep

is as a single indivisible atomic action. It is guaranteed

that when a semaphore operation has started, no other

process can access the semaphore until the operation has

completed or blocked.

94

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Atomic operations:

Nipun Thapa (OS/Unit 2) 95

 When one process modifies the semaphore value, no other

process can simultaneously modify that same semaphore

value.

 In addition, in case of the P(S) operation the testing of the

integer value of S (S<=0) and its possible modification (S=S-

1), must also be executed without interruption.

 Modification to the integer value of the semaphore in the

wait {p(s)} and signal{V(s)} operation must be executed

indivisibly(only one process can modify the same semaphore

value at a time)

https://genuinenotes.com

Semaphore operations:

Nipun Thapa (OS/Unit 2) 96

 P or Down, or Wait: P stands for proberen ("to test”)

 V or Up or Signal: Dutch words. V stands for verhogen

("increase")

 wait(sem)

 decrement the semaphore value. if negative, suspend the

process and place in queue. (Also referred to as P(), down in

literature.)

signal(sem)

 increment the semaphore value, allow the first process in the

queue to continue. (Also referred to as V(), up in literature.)

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 97

Counting semaphore

 integer value can range over an unrestricted domain

Binary semaphore

 integer value can range only between 0 and 1

 can be simpler to implement Also known as mutex locks

Provides mutual exclusion

 • Semaphore gives solution to n process.

Semaphore S; // initialized to 1

Do{

wait (S);

 Critical Section

signal (S);

} while(T)

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 98

Implementation of wait:

wait(s)

{

 while(s<=0); // do nothing

 s=s-1;

}

Implementation of signal:

signal(s)

{

 s=s+1;

}

https://genuinenotes.com

The producer-consumer problem using

semaphores.

Nipun Thapa (OS/Unit 2) 99

#define N 100 /* number of slots in the buffer */

typedef int semaphore; /* semaphores are a special kind of int */

semaphore mutex = 1; /* controls access to critical region */

semaphore empty = N; /* counts empty buffer slots */

semaphore full = 0; /* counts full buffer slots */

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 100

void producer(void)

 {

 int item;

 while (TRUE){ /* TRUE is the constant 1 */

 item = produce_item(); /* generate something to put in buffer */

 down(&empty); /* decrement empty count */

 down(&mutex); /* enter critical region */

 insert_item(item); /* put new item in buffer */

 up(&mutex); /* leave critical region */

 up(&full); /* increment count of full slots */

 }

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 101

void consumer(void)

 {

 int item;

 while (TRUE){ /* infinite loop */

 down(&full); /* decrement full count */

 down(&mutex); /* enter critical region */

 item = remove_item(); /* take item from buffer */

 up(&mutex); /* leave critical region */

 up(&empty); /* increment count of empty slots */

 consume_item(item); /* do something with the item */

 }

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 102

This solution uses three semaphore.

 1. Full:

For counting the number of slots that are full, initially 0

 2. Empty:

For counting the number of slots that are empty, initially equal

to the no. of slots in the buffer.

 3. Mutex:

To make sure that the producer and consumer do not access the

buffer at the same time, initially 1.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 103

Here in this example semaphores are used in two different
ways.

1.For mutual Exclusion:

 The mutex semaphore is for mutual exclusion.

 It is designed to guarantee that only one process at a time will
be reading or writing the buffer and the associated variable.

2.For synchronization:

 • Ensures who can work when and who have to stop when

 • The full and empty semaphores are needed to guarantee that
certain event sequences do or do not occur.

 In this case, they ensure that producer stops running when the
buffer is full and the consumer stops running when it is empty.

 The above definition of the semaphore suffer the problem of
busy wait.

https://genuinenotes.com

Advantages of semaphores

Nipun Thapa (OS/Unit 2) 104

 Processes do not busy wait while waiting for resources.

 While waiting, they are in a "suspended'' state, allowing the

CPU to perform other work.

 Works on (shared memory) multiprocessor systems.

 User controls synchronization.

https://genuinenotes.com

Disadvantage of semaphores

Nipun Thapa (OS/Unit 2) 105

 can only be invoked by processes--not interrupt service

routines because interrupt routines cannot block

 user controls synchronization--could mess up.

https://genuinenotes.com

Solving the Producer-Consumer

Problem using Semaphores

 Semaphores solve the lost-wakeup problem. It is essential

that they are implemented in an indivisible way. The normal

way is to implement up and down as system calls, with the

operating system briefly disabling all interrupts while it is

testing the semaphore, updating it, and putting the process to

sleep.

 If multiple CPUs are being used, each semaphore should be

protected by a lock variable, with the TSL instruction used to

make sure that only one CPU at a time examines the

semaphore.

106

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

 This solution uses three semaphores: one called full for
counting the number of slots that are full, one called empty
for counting the number of slots that are empty, and one
called mutex to make sure the producer and consumer do not
access the buffer at the same time. Full is initially 0, empty is
initially equal to the number of slots in the buffer (N), and
mutex is initially 1.

 The mutex semaphore is used for mutual exclusion. It is
designed to guarantee that only one process at a time will be
reading or writing the buffer and the associated variables. The
other use of semaphores is for synchronization. The full
and empty semaphores are used to guarantee synchronization.
In this case, they ensure that the producer stops running
when the buffer is full, and the consumer stops running when
it is empty.

107

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

108

Nipun Thapa (OS/Unit 2)

https://genuinenotes.com

Monitors:

Nipun Thapa (OS/Unit 2) 109

 In concurrent programming, a monitor is an object or

module intended to be used safely by more than one thread.

 The defining characteristic of a monitor is that its methods are

executed with mutual exclusion.

 That is, at each point in time, at most one thread may be executing

any of its methods.

 Monitors also provide a mechanism for threads to temporarily

give up exclusive access, it has to wait for some condition to be

met, before regaining exclusive access and resuming their task.

 Monitors also have a mechanism for signaling other threads that

such conditions have been met.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 110

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 111

 • A higher level synchronization primitive.

 • A monitor is a collection of procedures, variables, and data

structures that are all grouped together in a special kind of

module or package.

 • Processes may call the procedures in a monitor whenever

they want to, but they cannot directly access the monitor's

internal data structures from procedures declared outside the

monitor.

 • This rule, which is common in modern object-oriented

languages such as Java.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 112

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 113

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 114

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 115

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 116

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 117

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 118

https://genuinenotes.com

Message Passing

 Interprocess communication uses two primitives, send and

receive.

 They can easily be put into library procedures, such as

 send(destination, &message);

 receive(source, &message);

 The former call sends a message to a given destination and

the latter one receives a message from a given source.

 If no message is available, the receiver can block until one

arrives. Alternatively, it can return immediately with an

error code.

Nipun Thapa (OS/Unit 2) 119

https://genuinenotes.com

Message passing systems have many problems,

 Especially if the communicating processes are on different
machines connected by a network. For example, messages can
be lost on the network.

 To solve this problem, as soon as a message has been received,
the receiver will send back a special acknowledgement
message.

 If the sender has not received the acknowledgement within a
certain time interval, it retransmits the message.

 Now consider what happens if the message itself is received
correctly, but the acknowledgement is lost. The sender will
retransmit the message, so the receiver will get it twice.

 It is essential that the receiver is able to distinguish a new
message from the retransmission of an old one.

Nipun Thapa (OS/Unit 2) 120

https://genuinenotes.com

 Usually, this problem is solved by putting consecutive

sequence numbers in each original message.

 If the receiver gets a message bearing the same sequence

number as the previous message, it knows that the message is

a duplicate that can be ignored.

 There are also design issues that are important when the

sender and receiver are on the same machine. One of these is

performance. Copying messages from one process to another

is always slower than doing a semaphore operation.

Nipun Thapa (OS/Unit 2) 121

https://genuinenotes.com

The Producer-Consumer Problem with

Message Passing
 We assume that all messages are the same size and that messages

sent but not yet received are buffered automatically by the
operating system.

 In this solution, a total of N messages are used, analogous to the N
slots in a shared memory buffer.

 The consumer starts out by sending N empty messages to the
producer. Whenever the producer has an item to give to the
consumer, it takes an empty message and sends back a full one.

 If the producer works faster than the consumer, all the messages
will be full, waiting for the consumer: the producer will be
blocked, waiting for an empty to come back.

 If the consumer works faster, all the messages will be empty
waiting for the producer to fill them up: the consumer will be
blocked, waiting for a full message.

Nipun Thapa (OS/Unit 2) 122

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 123

https://genuinenotes.com

Sleeping Barber problem

Nipun Thapa (OS/Unit 2) 124

Problem : The analogy is based upon a hypothetical barber
shop with one barber. There is a barber shop which has one
barber, one barber chair, and n chairs for waiting for customers
if there are any to sit on the chair.

 If there is no customer, then the barber sleeps in his own
chair.

 When a customer arrives, he has to wake up the barber.

 If there are many customers and the barber is cutting a
customer’s hair, then the remaining customers either wait if
there are empty chairs in the waiting room or they leave if no
chairs are empty.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 125

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 126

Solution :

The solution to this problem includes three semaphores.

First is for the customer which counts the number of

customers present in the waiting room (customer in the barber

chair is not included because he is not waiting).

Second, the barber 0 or 1 is used to tell whether the barber is

idle or is working, And the third mutex is used to provide the

mutual exclusion which is required for the process to execute.

In the solution, the customer has the record of the number of

customers waiting in the waiting room if the number of

customers is equal to the number of chairs in the waiting room

then the upcoming customer leaves the barbershop.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 127

 When the barber shows up in the morning, he executes the
procedure barber, causing him to block on the semaphore
customers because it is initially 0. Then the barber goes to
sleep until the first customer comes up.

 When a customer arrives, he executes customer procedure
the customer acquires the mutex for entering the critical
region, if another customer enters thereafter, the second one
will not be able to anything until the first one has released
the mutex.

 The customer then checks the chairs in the waiting room if
waiting customers are less then the number of chairs then he
sits otherwise he leaves and releases the mutex.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 128

 If the chair is available then customer sits in the waiting room

and increments the variable waiting value and also increases

the customer’s semaphore this wakes up the barber if he is

sleeping.

 At this point, customer and barber are both awake and the

barber is ready to give that person a haircut. When the

haircut is over, the customer exits the procedure and if there

are no customers in waiting room barber sleeps.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 129

https://genuinenotes.com

Algorithm for Sleeping Barber problem:

Nipun Thapa (OS/Unit 2) 130

Semaphore Customers = 0;

Semaphore Barber = 0;

Mutex Seats = 1;

int FreeSeats = N;

Barber {

 while(true) { /* waits for a customer (sleeps). */

 down(Customers); /* mutex to protect the number of available seats.*/

 down(Seats); /* a chair gets free.*/

 FreeSeats++; /* bring customer for haircut.*/

 up(Barber); /* release the mutex on the chair.*/

 up(Seats); /* barber is cutting hair.*/

 }

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 131

Customer {

 while(true) { /* protects seats so only 1 customer tries to sit
in a chair if that's the case.*/

 down(Seats); //This line should not be here.

 if(FreeSeats > 0) { /* sitting down.*/

 FreeSeats--; /* notify the barber. */

 up(Customers); /* release the lock */

 up(Seats); /* wait in the waiting room if barber is busy. */

 down(Barber); // customer is having hair cut

 } else { /* release the lock */

 up(Seats); // customer leaves

 }

 }

}

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 132

 The Dining Philosopher Problem states that N philosophers

seated around a circular table with one chopstick between

each pair of philosophers.

 There is one chopstick between each philosopher. A

philosopher may eat if he can pickup the two chopsticks

adjacent to him. One chopstick may be picked up by any one

of its adjacent followers but not both.

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 133

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 134

 There is one chopstick between each philosopher

 A philosopher must pick up its two nearest chopsticks in

order to eat

 A philosopher must pick up first one chopstick, then the

second one, not both at once

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 135

 We need an algorithm for allocating these limited

resources(chopsticks) among several processes(philosophers)

such that solution is free from deadlock and free from

starvation.

 There exist some algorithm to solve Dining – Philosopher

Problem, but they may have deadlock situation. Also, a

deadlock-free solution is not necessarily starvation-free.

Semaphores can result in deadlock due to programming

errors. Monitors alone are not sufficiency to solve this, we

need monitors with condition variables

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 136

Monitor-based Solution to Dining Philosophers

We illustrate monitor concepts by presenting a deadlock-free

solution to the dining-philosophers problem. Monitor is used to

control access to state variables and condition variables. It only

tells when to enter and exit the segment. This solution imposes

the restriction that a philosopher may pick up her chopsticks

only if both of them are available.

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 137

 To code this solution, we need to distinguish among three
states in which we may find a philosopher. For this purpose, we
introduce the following data structure:

 THINKING – When philosopher doesn’t want to gain access to
either fork.

 HUNGRY – When philosopher wants to enter the critical
section.

 EATING – When philosopher has got both the forks, i.e., he has
entered the section.

 Philosopher i can set the variable state[i] = EATING only if
her two neighbors are not eating
(state[(i+4) % 5] != EATING) and (state[(i+1) % 5] != EATING).

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 138

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 139

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 140

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 141

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 142

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 143

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 144

Dining Philosopher Problem

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 145

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 146

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 147

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 148

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 149

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 150

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 151

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 152

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 153

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 154

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 155

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 156

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 157

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 158

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 159

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 160

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 161

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 162

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 163

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 164

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 165

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 166

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 167

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 168

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 169

https://genuinenotes.com

Dining Philosopher Problem

Nipun Thapa (OS/Unit 2) 170

#include <pthread.h>

#include <semaphore.h>

#include <stdio.h>

#define N 5

#define THINKING 2

#define HUNGRY 1

#define EATING 0

#define LEFT (phnum + 4) % N

#define RIGHT (phnum + 1) % N

int state[N];

int phil[N] = { 0, 1, 2, 3, 4 };

sem_t mutex;

sem_t S[N];

void test(int phnum)

{

if (state[phnum] == HUNGRY && state[LEFT] !=

EATING && state[RIGHT] != EATING) {

// state that eating

 state[phnum] = EATING;

 sleep(2);

printf("Philosopher %d takes fork %d and %d\n",

phnum + 1, LEFT + 1, phnum + 1);

printf("Philosopher %d is Eating\n", phnum + 1);

// sem_post(&S[phnum]) has no effect

// during takefork

// used to wake up hungry philosophers

// during putfork

 sem_post(&S[phnum]);

 }

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 171

// take up chopsticks

void take_fork(int phnum)

{

 sem_wait(&mutex);

// state that hungry

 state[phnum] = HUNGRY;

printf("Philosopher %d is Hungry\n", phnum + 1);

// eat if neighbours are not eating

 test(phnum);

 sem_post(&mutex);

// if unable to eat wait to be signalled

 sem_wait(&S[phnum]);

 sleep(1);

}

// put down chopsticks

void put_fork(int phnum)

{

 sem_wait(&mutex);

// state that thinking

 state[phnum] = THINKING;

printf("Philosopher %d putting fork %d and %d down\n",

 phnum + 1, LEFT + 1, phnum + 1);

printf("Philosopher %d is thinking\n", phnum + 1);

 test(LEFT);

 test(RIGHT);

 sem_post(&mutex);

}

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 172

void* philospher(void* num)

{

 while (1) {

 int* i = num;

 sleep(1);

 take_fork(*i);

 sleep(0);

 put_fork(*i);

 }

}

int main()

{

 int i;

 pthread_t thread_id[N];

 // initialize the semaphores

 sem_init(&mutex, 0, 1);

 for (i = 0; i < N; i++)

 sem_init(&S[i], 0, 0);

 for (i = 0; i < N; i++) {

// create philosopher processes

pthread_create(&thread_id[i], NULL, philospher,
&phil[i]);

 printf("Philosopher %d is thinking\n", i + 1);

 }

 for (i = 0; i < N; i++)

pthread_join(thread_id[i], NULL);

}

https://genuinenotes.com

CPU Scheduling

Nipun Thapa (OS/Unit 2) 173

Introduction:

 In a multiprogramming system, frequently multiple process competes
for the CPU at the same time.

 When two or more process are simultaneously in the ready state a
choice has to be made which process is to run next.

 This part of the OS is called Scheduler and the algorithm is called
scheduling algorithm.

 Process execution consists of cycles of CPU execution and I/O wait.
Processes alternate between these two states.

 Process execution begins with a CPU burst that is followed by I/O
burst, which is followed by another CPU burst then another i/o burst,
and so on.

 Eventually, the final CPU burst ends with a system request to terminate
execution.

https://genuinenotes.com

CPU Scheduling

Nipun Thapa (OS/Unit 2) 174

The long-term scheduler:

 selects processes from this process pool and loads selected processes into memory for

execution.

The short-term scheduler:

 selects the process to get the processor from among the processes which are already in

memory.

 The short-time scheduler will be executing frequently (mostly at least once every 10

milliseconds).

So it has to be very fast in order to achieve a better processor utilization.

Medium term scheduler:

 It can sometimes be good to reduce the degree of multiprogramming by removing

processes from memory and storing them on disk.

 These processes can then be reintroduced into memory by the medium-term scheduler.

 This operation is also known as swapping. Swapping may be necessary to free memory.

https://genuinenotes.com

CPU Scheduling

Nipun Thapa (OS/Unit 2) 175

https://genuinenotes.com

Scheduling Criteria:

Nipun Thapa (OS/Unit 2) 176

 Many criteria have been suggested for comparison of
CPU scheduling algorithms.

CPU utilization:

 we have to keep the CPU as busy as possible. It may range
from 0 to 100%. In a real system it should range from 40 –
90 % for lightly and heavily loaded system.

Throughput:

 It is the measure of work in terms of number of process
completed per unit time. Eg: For long process this rate may
be 1 process per hour, for short transaction, throughput may
be 10 process per second.

https://genuinenotes.com

Scheduling Criteria:

Nipun Thapa (OS/Unit 2) 177

Turnaround Time:

 It is the sum of time periods spent in waiting to get into memory,
waiting in ready queue, execution on the CPU and doing I/O.

 The interval form the time of submission of a process to the time of
completion is the turnaround time.

 Waiting time plus the service time.

 Turnaround time= Time of completion of job - Time of submission
of job. (waiting time + service time or burst time)

Waiting time:

 its the sum of periods waiting in the ready queue.

Response time:

 in interactive system the turnaround time is not the best criteria.

 Response time is the amount of time it takes to start responding, not the
time taken to output that response.

https://genuinenotes.com

Process Scheduling Queues

Nipun Thapa (OS/Unit 2) 178

 The OS maintains all PCBs in Process Scheduling Queues.
The OS maintains a separate queue for each of the process states and
PCBs of all processes in the same execution state are placed in the
same queue. When the state of a process is changed, its PCB is
unlinked from its current queue and moved to its new state queue.

 The Operating System maintains the following important
process scheduling queues −

 Job queue − This queue keeps all the processes in the system.

 Ready queue − This queue keeps a set of all processes residing
in main memory, ready and waiting to execute. A new process is
always put in this queue.

 Device queues − The processes which are blocked due to
unavailability of an I/O device constitute this queue.

https://genuinenotes.com

Process Scheduling Queues

Nipun Thapa (OS/Unit 2) 179

https://genuinenotes.com

Two-State Process Model

Nipun Thapa (OS/Unit 2) 180

 Two-state process model refers to running and non-running
states which are described below −

 Running

When a new process is created, it enters into the system as in the
running state.

 Not Running

Processes that are not running are kept in queue, waiting for their turn
to execute. Each entry in the queue is a pointer to a particular process.
Queue is implemented by using linked list. Use of dispatcher is as
follows. When a process is interrupted, that process is transferred in the
waiting queue. If the process has completed or aborted, the process is
discarded. In either case, the dispatcher then selects a process from the
queue to execute.

https://genuinenotes.com

Types of Scheduling:

Nipun Thapa (OS/Unit 2) 181

1. Preemptive Scheduling

 preemptive scheduling algorithm picks a process and lets it

run for a maximum of some fixed time.

 If it is still running at the end of the time interval, it is

suspended and the scheduler picks another process to run (if

one is available).

 Doing preemptive scheduling requires having a clock

interrupt occur at the end of time interval to give control of

the CPU back to the scheduler.

https://genuinenotes.com

Types of Scheduling:

Nipun Thapa (OS/Unit 2) 182

2. Non preemptive Scheduling

 Nonpreemptive scheduling algorithm picks a process to

run and then just lets it runa until it blocks (either on I/O or

waiting for another process) or until it voluntarily releases

the CPU.

 Even it runs for hours, it will not be forcibly suspended.

https://genuinenotes.com

Preemptive Vs NonPreemptive

Nipun Thapa (OS/Unit 2) 183

PARAMENTER PREEMPTIVE SCHEDULING
NON-PREEMPTIVE

SCHEDULING

Basic
In this resources(CPU Cycle) are allocated to a

process for a limited time.

Once resources(CPU Cycle) are

allocated to a process, the process

holds it till it completes its burst

time or switches to waiting state.

Interrupt Process can be interrupted in between.

Process can not be interrupted

untill it terminates itself or its

time is up.

Starvation
If a process having high priority frequently arrives in

the ready queue, low priority process may starve.

If a process with long burst time is

running CPU, then later coming

process with less CPU burst time

may starve.

Overhead It has overheads of scheduling the processes. It does not have overheads.

Flexibility flexible rigid

Cost cost associated no cost associated

https://genuinenotes.com

1. Preemptive Scheduling:

Nipun Thapa (OS/Unit 2) 184

 Preemptive scheduling is used when a process switches from

running state to ready state or from waiting state to ready

state.

 The resources (mainly CPU cycles) are allocated to the

process for the limited amount of time and then is taken

away, and the process is again placed back in the ready queue

if that process still has CPU burst time remaining. That

process stays in ready queue till it gets next chance to

execute.

 Algorithms based on preemptive scheduling are: Round

Robin (RR), Shortest Job First (SJF basically non

preemptive) and Priority (non preemptive version), etc.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 185

1. Preemptive Scheduling:

https://genuinenotes.com

2. Non-Preemptive Scheduling:

Nipun Thapa (OS/Unit 2) 186

 Non-preemptive Scheduling is used when a process terminates, or

a process switches from running to waiting state.

 In this scheduling, once the resources (CPU cycles) is allocated to

a process, the process holds the CPU till it gets terminated or it

reaches a waiting state. In case of non-preemptive scheduling does

not interrupt a process running CPU in middle of the execution.

Instead, it waits till the process complete its CPU burst time and

then it can allocate the CPU to another process.

 Algorithms based on preemptive scheduling are: Shortest

Remaining Time First (SRTF), Priority (preemptive version), etc.

https://genuinenotes.com

2. Non-Preemptive Scheduling:

Nipun Thapa (OS/Unit 2) 187

https://genuinenotes.com

Dispatcher

Nipun Thapa (OS/Unit 2) 188

 A dispatcher is a special program which comes into play after
the scheduler.

 When the scheduler completes its job of selecting a process,
it is the dispatcher which takes that process to the desired
state/queue.

 The dispatcher is the module that gives a process control
over the CPU after it has been selected by the short-term
scheduler. This function involves the following:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart
that program

https://genuinenotes.com

Scheduler

Nipun Thapa (OS/Unit 2) 189

 Schedulers are special system software which

handle process scheduling in various ways. Their main task

is to select the jobs to be submitted into the system and to

decide which process to run. There are three types of

Scheduler:

1. Long term (job) scheduler

2. Medium term scheduler

3. Short term (CPU) scheduler

https://genuinenotes.com

Scheduler

Nipun Thapa (OS/Unit 2) 190

1. Long term (job) scheduler –

 Due to the smaller size of main memory initially all program

are stored in secondary memory.

 When they are stored or loaded in the main memory they are

called process.

 This is the decision of long term scheduler that how many

processes will stay in the ready queue.

 Hence, in simple words, long term scheduler decides the

degree of multi-programming of system.

https://genuinenotes.com

Scheduler

Nipun Thapa (OS/Unit 2) 191

2. Medium term scheduler –

 Most often, a running process needs I/O operation which

doesn’t requires CPU.

 Hence during the execution of a process when a I/O operation

is required then the operating system sends that process from

running queue to blocked queue.

 When a process completes its I/O operation then it should

again be shifted to ready queue.

 ALL these decisions are taken by the medium-term scheduler.

Medium-term scheduling is a part of swapping.

https://genuinenotes.com

Scheduler

Nipun Thapa (OS/Unit 2) 192

3. Short term (CPU) scheduler –

When there are lots of processes in main memory

initially all are present in the ready queue.

Among all of the process, a single process is to be

selected for execution.

This decision is handled by short term scheduler.

Let’s have a look at the figure given below. It may

make a more clear view for you.

https://genuinenotes.com

The Difference between the Scheduler

and Dispatcher

Nipun Thapa (OS/Unit 2) 193

 Consider a situation, where various processes are residing in the
ready queue waiting to be executed.

 The CPU cannot execute all of these processes simultaneously, so
the operating system has to choose a particular process on the
basis of the scheduling algorithm used. So, this procedure of
selecting a process among various processes is done by the
scheduler.

 Once the scheduler has selected a process from the queue,
the dispatcher comes into the picture, and it is the dispatcher
who takes that process from the ready queue and moves it into the
running state.

 Therefore, the scheduler gives the dispatcher an ordered list of
processes which the dispatcher moves to the CPU over time.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 194

Example –

There are 4 processes in the ready queue, P1, P2, P3, P4; Their

arrival times are t0, t1, t2, t3 respectively. A First in First out (FIFO)

scheduling algorithm is used. Because P1 arrived first, the scheduler

will decide it is the first process that should be executed, and the

dispatcher will remove P1 from the ready queue and give it to the

CPU. The scheduler will then determine P2 to be the next process

that should be executed, so when the dispatcher returns to the queue

for a new process, it will take P2 and give it to the CPU. This

continues in the same way for P3, and then P4.

The Difference between the Scheduler and Dispatcher
https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 195

PROPERTIES DISPATCHER SCHEDULER

Definition:
Dispatcher is a module that gives control of CPU to

the process selected by short term scheduler

Scheduler is something which

selects a process among various

processes

Types:
There are no diifrent types in dispatcher.It is just a

code segment.

There are 3 types of scheduler i.e.

Long-term, Short-term, Medium-

term

Dependency:

Working of dispatcher is dependednt on

scheduler.Means dispatcher have to wait untill

scheduler selects a process.

Scheduler works idependently.It

works immediately when needed

Algorithm:
Dispatcher has no specific algorithm for its

implementation

Scheduler works on various

algorithm such as FCFS, SJF, RR

etc.

Time Taken:
The time taken by dispatcher is called dispatch

latency.

TIme taken by scheduler is usually

negligible.Hence we neglect it.

Functions:

Dispatcher is also responsible for:Context Switching,

Switch to user mode, Jumping to proper location

when process again restarted

The only work of scheduler is

selection of processes.

https://genuinenotes.com

Scheduling Criteria

Nipun Thapa (OS/Unit 2) 196

There are several different criteria to consider when trying to select the
"best" scheduling algorithm for a particular situation and environment,
including:

1. CPU utilization - Ideally the CPU would be busy 100% of the time, so as
to waste 0 CPU cycles. On a real system CPU usage should range from 40%
(lightly loaded) to 90% (heavily loaded.)

2. Throughput - Number of processes completed per unit time. May range
from 10 / second to 1 / hour depending on the specific processes.

3. Turnaround time - Time required for a particular process to complete,
from submission time to completion. (Wall clock time.)

4. Waiting time - How much time processes spend in the ready queue
waiting their turn to get on the CPU.
 (Load average - The average number of processes sitting in the ready queue

waiting their turn to get into the CPU. Reported in 1-minute, 5-minute, and 15-
minute averages by "uptime" and "who".)

5. Response time - The time taken in an interactive program from the
issuance of a command to the commence of a response to that command.

https://genuinenotes.com

Scheduling Criteria

Nipun Thapa (OS/Unit 2) 197

 In general one wants to optimize the average value of a

criteria (Maximize CPU utilization and throughput, and

minimize all the others.) However some times one wants to

do something different, such as to minimize the maximum

response time.

 Sometimes it is most desirable to minimize the variance of a

criteria than the actual value. I.e. users are more accepting of

a consistent predictable system than an inconsistent one, even

if it is a little bit slower.

https://genuinenotes.com

The goals of CPU scheduling are:

Nipun Thapa (OS/Unit 2) 198

 Fairness: Each process gets fair share of the CPU.

 Efficiency: When CPU is 100% busy then efficiency is increased.

 Response Time: Minimize the response time for interactive user.

 Throughput: Maximizes jobs per given time period.

 Waiting Time: Minimizes total time spent waiting in the ready

queue.

 Turn Around Time: Minimizes the time between submission

and termination.

https://genuinenotes.com

Scheduling

Nipun Thapa (OS/Unit 2) 199

 Batch system scheduling

 First come first served

 Shortest job first

 Shortest remaining time next

 Interactive System Scheduling

 Round Robin scheduling

 Priority scheduling

 Multiple queues

https://genuinenotes.com

1.First come first served

Nipun Thapa (OS/Unit 2) 200

 FCFS is the simplest non-preemptive algorithm. Processes are
assigned the CPU in the order they request it. That is the process
that requests the CPU first is allocated the CPU first.

 The implementation of FCFS is policy is managed with a
FIFO(First in first out) queue.

 When the first job enters the system from the outside in the
morning, it is started immediately and allowed to run as long as it
wants to.

 As other jobs come in, they are put onto the end of the queue.

 When the running process blocks, the first process on the queue is
run next.

 When a blocked process becomes ready, like a newly arrived job,
it is put on the end of the queue.

https://genuinenotes.com

1.First come first served

Nipun Thapa (OS/Unit 2) 201

Advantages:

 Easy to understand and program.

 Equally fair.,

 Suitable specially for Batch Operating system.

Disadvantages:

 FCFS is not suitable for time-sharing systems where it is

important that each user should get the CPU for an equal

amount of arrival time.

https://genuinenotes.com

1.First come first served

Nipun Thapa (OS/Unit 2) 202

 Calculate the average waiting time if the processes arrive in

the order of:

a). P1, P2, P3

b). P2, P3, P1

https://genuinenotes.com

1.First come first served

Nipun Thapa (OS/Unit 2) 203

a) The processes arrive the order P1, P2, P3. Let us assume
they arrive in the same time at 0 ms in the system.

We get the following gantt chart.

 Waiting time for P1= 0ms , for P2 = 24 ms for P3 = 27ms

 Avg waiting time: (0+24+27)/3= 17

https://genuinenotes.com

1.First come first served

Nipun Thapa (OS/Unit 2) 204

b.) If the process arrive in the order P2,P3, P1

 Average waiting time: (0+3+6)/3=3.

 Average waiting time vary substantially if the process CPU
burst time vary greatly.

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 205

 When several equally important jobs are sitting in the i/p queue

waiting to be started, the scheduler picks the shortest jobs first.

 The disadvantages of this algorithm is the problem to know the

length of time for which CPU is needed by a process.

 The SJF is optimal when all the jobs are available simultaneously.

 The SJF is either preemptive or non preemptive.

 Preemptive SJF scheduling is sometimes called Shortest

Remaining Time First scheduling.

 With this scheduling algorithms the scheduler always chooses the

process whose remaining run time is shortest.

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 206

 When a new job arrives its total time is compared to the

current process remaining time.

 If the new job needs less time to finish than the current

process, the current process is suspended and the new job is

started.

 This scheme allows new short jobs to get good service.

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 207

 For example, the Gantt chart below is based upon the

following CPU burst times, (and the assumption that all jobs

arrive at the same time.)

Process Burst Time

P1 6

P2 8

P3 7

P4 3

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 208

In the case above,

 the average wait time is (0 + 3 + 9 + 16) / 4 = 7.0 ms,

(as opposed to 10.25 ms for FCFS for the same processes.)

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 209

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

p4 3 5

•For example, the following Gantt chart is based upon the following data:

https://genuinenotes.com

2. Shortest Job First:

Nipun Thapa (OS/Unit 2) 210

The average wait time in this case is ((5 - 3) + (10 - 1) + (17

- 2)) / 4 = 26 / 4 = 6.5 ms.

(As opposed to 7.75 ms for non-preemptive SJF or 8.75 for

FCFS.)

https://genuinenotes.com

3. Shortest remaining time next (SRTF)

Nipun Thapa (OS/Unit 2) 211

 This Algorithm is the preemptive version of SJF scheduling.

 In SRTF, the execution of the process can be stopped after certain
amount of time. At the arrival of every process, the short term
scheduler schedules the process with the least remaining burst
time among the list of available processes and the running process.

 Once all the processes are available in the ready queue, No
preemption will be done and the algorithm will work as SJF
scheduling.

 The context of the process is saved in the Process Control
Block when the process is removed from the execution and the
next process is scheduled. This PCB is accessed on the next
execution of this process.

https://genuinenotes.com

3. Shortest remaining time next

Nipun Thapa (OS/Unit 2) 212

https://genuinenotes.com

4. Round-Robin Scheduling Algorithms:

Nipun Thapa (OS/Unit 2) 213

 One of the oldest, simplest, fairest and most widely used algorithm is
round robin (RR).

 In the round robin scheduling, processes are dispatched in a FIFO
manner but are given a limited amount of CPU time called a time-slice
or a quantum.

 If a process does not complete before its CPU-time expires, the CPU is
preempted and given to the next process waiting in a queue.

 The preempted process is then placed at the back of the ready list.

 If the process has blocked or finished before the quantum has elapsed the
CPU switching is done.

 Round Robin Scheduling is preemptive (at the end of time-slice)
therefore it is effective in timesharing environments in which the system
needs to guarantee reasonable response times for interactive users.

https://genuinenotes.com

4. Round-Robin Scheduling Algorithms:

Nipun Thapa (OS/Unit 2) 214

 The only interesting issue with round robin scheme is the

length of the quantum.

 Setting the quantum too short causes too many context

switches and lower the CPU efficiency.

 On the other hand, setting the quantum too long may cause

poor response time and approximates FCFS.

 In any event, the average waiting time under round robin

scheduling is on quite long.

https://genuinenotes.com

4. Round-Robin Scheduling Algorithms:

Nipun Thapa (OS/Unit 2) 215

Process Burst Time

P1 24

P2 3

P3 3

Quantum =4

Solution :

https://genuinenotes.com

5. Priority Scheduling:

Nipun Thapa (OS/Unit 2) 216

 A priority is associated with each process, and the CPU is

allocated to the process with the highest priority.

 Equal priority processes are scheduled in the FCFS order.

Assigning priority:

1. To prevent high priority process from running indefinitely the

scheduler may decrease the priority of the currently running

process at each clock interrupt. If this causes its priority to drop

below that of the next highest process, a process switch occurs.

2. Each process may be assigned a maximum time quantum that is

allowed to run. When this quantum is used up, the next highest

priority process is given a chance to run.

https://genuinenotes.com

5. Priority Scheduling:

Nipun Thapa (OS/Unit 2) 217

 It is often convenient to group processes into priority classes and

use priority scheduling among the classes but round-robin

scheduling within each class.

https://genuinenotes.com

5. Priority Scheduling:

Nipun Thapa (OS/Unit 2) 218

Problems in Priority Scheduling:

Starvation:

 Low priority process may never execute.

 Solution: Aging: As time progress increase the priority of

Process.

https://genuinenotes.com

5. Priority Scheduling:

Nipun Thapa (OS/Unit 2) 219

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Solution :

https://genuinenotes.com

6. Multilevel Queue Scheduling

Nipun Thapa (OS/Unit 2) 220

 Depending on the priority of the process, In which particular
ready queue, the process has to be placed will be decided.

 The high priority process will be placed in the top level ready
queue and low priority process will be placed in the bottom level
queue.

 Only after completion of all the process from the top level ready
queue, the further level ready queue process will be scheduled.

 The major drawback of this scheduling is, the process placed in the
bottom level ready queue will suffer from starvation.

 It is also possible to use different scheduling algorithms in the
different ready queue.

 To solve the problem of the starvation in this algorithm we use of
the feedback in this algorithm which is called multi level feedback
scheduling.

https://genuinenotes.com

6. Multilevel feedback Queue

Scheduling

Nipun Thapa (OS/Unit 2) 221

 This algorithm avoids the problem of starvation and at the same time
preference will be given to high priority process.

example

Lets say a process arrives with

the time quantum of 20 then,

It will be executed in the 1st level

 ready queue for 2 time unit

and it will be shifted to 2nd level

 ready queue In 2nd level queue

 it will execute for 4 time units and

it will again be shifted to the 3rd

level ready queue and so on until it completes the complete execution.

https://genuinenotes.com

6. Multilevel Queue Scheduling

Nipun Thapa (OS/Unit 2) 222

 Let us look at an example of a multilevel queue scheduling

algorithm with five queues, listed below in the order of priority.

1.System processes

2.Interactive processes

3.Interactive editing processes

4.Batch processes

5.Student processes

 Each queue has absolute

priority over lower priority

queues.

https://genuinenotes.com

Nipun Thapa (OS/Unit 2) 223

6. Multilevel Queue Scheduling

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 224

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 225

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 226

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 227

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 228

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 229

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 230

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 231

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 232

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 233

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 234

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 235

Solution :

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 236

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 237

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 238

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 239

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 240

https://genuinenotes.com

Exercise:

Nipun Thapa (OS/Unit 2) 241

9

https://genuinenotes.com

Real-Time Scheduling Algorithms

Nipun Thapa (OS/Unit 2) 242

 In the simplest real-time systems, where the tasks and their

execution times are all known, there might not even be a

scheduler. One task might simply call (or yield to) the next. This

model makes a great deal of sense in a system where the tasks

form a producer/consumer pipeline (e.g. MPEG frame receipt,

protocol decoding, image decompression, display).

 In more complex real-time system, with a larger (but still fixed)

number of tasks that do not function in a strictly pipeline fashion,

it may be possible to do static scheduling. Based on the list of tasks

to be run, and the expected completion time for each, we can

define (at design or build time) a fixed schedule that will ensure

timely execution of all tasks.

https://genuinenotes.com

Real-Time Scheduling Algorithms

Nipun Thapa (OS/Unit 2) 243

 But for many real-time systems, the work-load changes from
moment to moment, based on external events. These
require dynamic scheduling. For dynamic scheduling algorithms, there
are two key questions:

1. how they choose the next (ready) task to run
 shortest job first
 static priority ... highest priority ready task
 soonest start-time deadline first (ASAP)
 soonest completion-time deadline first (slack time)

2. how they handle overload (infeasible requirements)
 best effort
 periodicity adjustments ... run lower priority tasks less often.
 work shedding ... stop running lower priority tasks entirely.

https://genuinenotes.com

Real-Time Scheduling Algorithms

Nipun Thapa (OS/Unit 2) 244

 Preemption may also be a different issue in real-time systems. In
ordinary time-sharing, preemption is a means of improving mean response
time by breaking up the execution of long-running, compute-intensive
tasks. A second advantage of preemptive scheduling, particularly important
in a general purpose timesharing system, is that it prevents a buggy (infinite
loop) program from taking over the CPU. The trade-off, between
improved response time and increased overhead (for the added context
switches), almost always favors preemptive scheduling. This may not be
true for real-time systems:

 preempting a running task will almost surely cause it to miss its completion
deadline.

 since we so often know what the expected execution time for a task will be,
we can schedule accordingly and should have little need for preemption.

 embedded and real-time systems run fewer and simpler tasks than general
purpose time systems, and the code is often much better tested ... so infinite
loop bugs are extremely rare.

https://genuinenotes.com

Finished Unit 2

Nipun Thapa (OS/Unit 2) 245

https://genuinenotes.com

