March - April 2017

BIM / First Semester / ITC 212 : Digital Logic / IT 212: Digital Logic Design

Candidates are required to answer all the questions in their own words as far as practicable.

> Group "A"

Brief Answer questions :
[10*1=10]

1. Express FOM in ASCII code.
2. Why gray codes are used in K-map instead of binary code ?
3. What is the maximum number of half adder that we can use in n bit parallel adder and why ?
4. Identify and state the similarity between latch and flip- flop.
5. What is the use of cascaded counters?
6. Which shift register counter constructed using " n " flip flop can " 2 n " states and why ?
7. If the size of address register is 4 -bit then what will be the maximum number of words that can be stored in memory ?
8. Differentiate between fine grained and coarse grained FPGA.
9. Define noise immunity.
10. Differentiate between Truth table and Characteristics table.

Group "B"

Short Answer Questions:
11. (a) State and prove distributive law using truth table method .
(b) If $\mathrm{A}=(1011)_{2}$, then perform A-B using signed 2's Complement method.
12. Design and explain the operational characteristics of flip flop that is single input version of JK flip flop .
13. Design circuit that can display $2,5,7$ and E in seven segments.
14. Design 3-bit asynchronous UP/DOWN counter.
15. Design and explain a shift register where 4 bit data be simultaneously loaded in a single clock pulse and data can be shifted one bit at time from it.

Group "C"

Long Answer questions:
[2*5=10]
16. If $\mathrm{F}=\left(\mathrm{A}^{\prime}+\mathrm{B}\right)(\mathrm{A}+\mathrm{D})\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$ then minimize it using K -map and design a circuit using minimum numbers of NAND gates .
17. Design circuit of sequence recognizer that detects the bit sequence 11111.

